31,443 research outputs found

    Adaptivity to Noise Parameters in Nonparametric Active Learning

    Full text link
    This work addresses various open questions in the theory of active learning for nonparametric classification. Our contributions are both statistical and algorithmic: -We establish new minimax-rates for active learning under common \textit{noise conditions}. These rates display interesting transitions -- due to the interaction between noise \textit{smoothness and margin} -- not present in the passive setting. Some such transitions were previously conjectured, but remained unconfirmed. -We present a generic algorithmic strategy for adaptivity to unknown noise smoothness and margin; our strategy achieves optimal rates in many general situations; furthermore, unlike in previous work, we avoid the need for \textit{adaptive confidence sets}, resulting in strictly milder distributional requirements

    Fast global convergence of gradient methods for high-dimensional statistical recovery

    Full text link
    Many statistical MM-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension \pdim to grow with (and possibly exceed) the sample size \numobs. This high-dimensional structure precludes the usual global assumptions---namely, strong convexity and smoothness conditions---that underlie much of classical optimization analysis. We define appropriately restricted versions of these conditions, and show that they are satisfied with high probability for various statistical models. Under these conditions, our theory guarantees that projected gradient descent has a globally geometric rate of convergence up to the \emph{statistical precision} of the model, meaning the typical distance between the true unknown parameter θ∗\theta^* and an optimal solution θ^\hat{\theta}. This result is substantially sharper than previous convergence results, which yielded sublinear convergence, or linear convergence only up to the noise level. Our analysis applies to a wide range of MM-estimators and statistical models, including sparse linear regression using Lasso (ℓ1\ell_1-regularized regression); group Lasso for block sparsity; log-linear models with regularization; low-rank matrix recovery using nuclear norm regularization; and matrix decomposition. Overall, our analysis reveals interesting connections between statistical precision and computational efficiency in high-dimensional estimation

    Nonparametric Regression, Confidence Regions and Regularization

    Full text link
    In this paper we offer a unified approach to the problem of nonparametric regression on the unit interval. It is based on a universal, honest and non-asymptotic confidence region which is defined by a set of linear inequalities involving the values of the functions at the design points. Interest will typically centre on certain simplest functions in that region where simplicity can be defined in terms of shape (number of local extremes, intervals of convexity/concavity) or smoothness (bounds on derivatives) or a combination of both. Once some form of regularization has been decided upon the confidence region can be used to provide honest non-asymptotic confidence bounds which are less informative but conceptually much simpler

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore