189,167 research outputs found
Approximating data with weighted smoothing splines
n.a. --Approximation,Residuals,Smoothing Splines,Thin Plate Splines
Enhancing SPH using moving least-squares and radial basis functions
In this paper we consider two sources of enhancement for the meshfree
Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving
the accuracy of the particle approximation. Namely, we will consider shape
functions constructed using: moving least-squares approximation (MLS); radial
basis functions (RBF). Using MLS approximation is appealing because polynomial
consistency of the particle approximation can be enforced. RBFs further appeal
as they allow one to dispense with the smoothing-length -- the parameter in the
SPH method which governs the number of particles within the support of the
shape function. Currently, only ad hoc methods for choosing the
smoothing-length exist. We ensure that any enhancement retains the conservative
and meshfree nature of SPH. In doing so, we derive a new set of
variationally-consistent hydrodynamic equations. Finally, we demonstrate the
performance of the new equations on the Sod shock tube problem.Comment: 10 pages, 3 figures, In Proc. A4A5, Chester UK, Jul. 18-22 200
Integral approximation by kernel smoothing
Let be an i.i.d. sequence of random variables in
, . We show that, for any function , under regularity conditions, where
is the classical kernel estimator of the density of . This
result is striking because it speeds up traditional rates, in root , derived
from the central limit theorem when . Although this paper
highlights some applications, we mainly address theoretical issues related to
the later result. We derive upper bounds for the rate of convergence in
probability. These bounds depend on the regularity of the functions
and , the dimension and the bandwidth of the kernel estimator
. Moreover, they are shown to be accurate since they are used as
renormalizing sequences in two central limit theorems each reflecting different
degrees of smoothness of . As an application to regression modelling
with random design, we provide the asymptotic normality of the estimation of
the linear functionals of a regression function. As a consequence of the above
result, the asymptotic variance does not depend on the regression function.
Finally, we debate the choice of the bandwidth for integral approximation and
we highlight the good behavior of our procedure through simulations.Comment: Published at http://dx.doi.org/10.3150/15-BEJ725 in the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm). arXiv admin
note: text overlap with arXiv:1312.449
- …
