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Abstract

Given a data set (ti, yi), i = 1, . . . , n with the ti ∈ [0, 1] non-parametric
regression is concerned with the problem of specifying a suitable function
fn : [0, 1] → R such that the data can be reasonably approximated by the
points (ti, fn(ti)), i = 1, . . . , n. A common desideratum is that the function fn

be smooth but the path towards this goal is often the indirect one of assuming
a “true” data generating function f and then measuring performance by the
expected mean square. The approach taken in this paper is a different one.
We specify precisely what we mean by a function fn being an adequate ap-
proximation to the data and then, using weighted splines, we try to maximize
the smoothness given the approximation constraints.
Keywords: Approximation; Residuals; Smoothing Splines; Thin Plate Splines

1 Contents

In Section 2 we give a short overview of research done on non-parametric regression
on the real line. An alternative approach is sketched in Section 2.3. The problem
of differentiable regression functions is considered in Section 3 where the method of
weighted smoothing splines is described and compared with other methods by means
of examples. An application is given to a problem in thin film physics in Section 3.3.
Extensions for heteroscedastic data and a robustified version are given in Section 4.
In Section 5 we indicate how the idea can be applied to the determination of local
bandwidths for kernel methods. A further extension to image analysis is given in
Section 6 and finally in Section 7 we give some results on asymptotics.

∗This work has been supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 475
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2 Non-parametric regression

2.1 Previous work

In the one-dimensional case non-parametric regression is concerned with determing
functions fn : [0, 1] → R which adequately represent a data set (ti, y(ti)), i = 1, . . . , n
with the ti in [0, 1]. There are many such procedures: we mention kernel estimates
with fixed and local bandwidths (Eubank (1988, 1999), Härdle (1990) and Wand
and Jones (1995)), local polynomials (Fan and Gijbels (1996) and Ruppert and
Wand (1994)), adaptive weights smoothing (Polzehl and Spokoiny (2000)), wavelets
(Donoho et al (1995)) splines (Wahba (1990), Green and Silverman (1994) and Eu-
bank (1988, 1999), de Boor (1978, 2001) and Schumaker (1981)) and the taut string
method (Davies and Kovac (2001)). Some of these procedures are automatic in
that there exists automatic choices of relevant parameters. We mention hard and
soft thresholding for wavelets, cross-validation for kernel estimates, splines and lo-
cal polynomials (Wahba (1977) and Craven and Wahba (1979) Härdle and Marron
(1985), Härdle et al (1988),Gasser et al (1991) and Härdle et al (1992)) and plug-in
methods for kernel estimates (Brockmann et al (1993) and Herrmann (1997)). An-
other possibility is to use model choice criteria such as AIC and MDL (Hurvich et al
(1998), Rissanen (2000)). Both adaptive weights smoothing (Polzehl and Spokoiny
(2000)) and the taut string method (Davies and Kovac (2001)) have default values
for the relevant parameters.

2.2 Asymptotics and rates of convergence

The function fn produced by the procedure is usually required to be sufficiently
close to the data to represent it accurately and to be simple or smooth in some
sense. In most of the literature mentioned above the path to attaining these goals
is to assume that the data are generated as described by the model

Y (t) = f(t) + σZ(t), 0 ≤ t ≤ 1, (1)

and then to consider rates of convergence of fn to f as measured in some norm such
as

‖f − fn‖2
2 =

∫ 1

0

(f(t) − fn(t))2 dt. (2)

If the function f has a continuous derivative of order s then convergence rates of
order n−s/(2s+1) are possible. In the case of kernel estimators this can be attained by
choosing the kernel to have zero moments of order 1, . . . , s−1 and a non-zero moment
of order s. To take advantage of it the user must know the value of s for the “true”
data generating function f . Some methods such as wavelets adapt automatically
to the unknown smoothness of f upto a limit depending on the procedure . For
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example if the wavelets have r vanishing moments and r continuous derivatives then
an appropriate procedure will automatically adjust to the number of derivatives of
f up a limit s < r (Donoho and Johnstone (1994) and (1995)). The procedures will
not only adjust in the global norm (2) but also in local versions

‖f − fn‖2
x0,cn

=
1

2cn

∫ x0+cn

x0−cn

(f(t) − fn(t))2 dt, (3)

(Cai and Low (2005)).
In the approach to non-parametric regression described above the goals of close-

ness to the data and smoothness of the regression function attained only indirectly.
Although some procedures such as wavelets work well under certain circumstances
others do not. If we consider kernel estimators and suppose that f has a continuous
second derivative then the optimal global bandwidth hn is of the order of n−2/5 and
gives rise to the optimal rate of convergence in integrated mean square error of n−4/5.
The optimal bandwidth depends on the second derivative of f but if the bandwidth
is chosen by cross-validation then it is asymptotically optimal (Stone (1982)). It
follows that for a sufficiently large sample size the function fn will be close to the
generating function f . Moreover it will be smooth and the quantitative smoothness
will improve as the sample size becomes larger. Similar considerations apply to the
choice of the penalizing factor λ in the maximum penalized likelihood procedure
where the function fn is the solution of

minimize Sλ(f) :=
n
∑

i=1

λ(yi − f(ti))
2 +

∫ 1

0

f (2)(x)2 dx. (4)

Although asymptotically everything is satisfactory it is the case that for finite sam-
ples and in particular where the data show large local variation it is not possible to
simultaneously be close to the data and to be smooth as there is no choice of global
bandwidth which the function fn is satisfactory in both senses.

2.3 Approximation and regularization

The approach we take in this paper is a different one. We give a precise definition
of what is meant by a function fn being sufficiently close to the data and then,
given these side conditions, we maximize the simplicity or the smoothness of the
functions which satisfy them. These leads to an optimization problem for the data
at hand. The choice of side conditions and the defintion of simplicity or smoothness
will depend on the data and the questions to be answered. In this we follow Davies
and Kovac (2001) and (2004). Given data (ti, y(ti)), i = 1, . . . , n and a function fn

we consider the residuals

r(ti, fn) = y(ti) − fn(ti), i = 1, . . . , n (5)
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and their normalized sums over intervals I ⊂ [0, 1]

w(I, fn) =
1

√

|I|
∑

ti∈I

r(ti, fn), (6)

where |I| denotes the number of points ti in I. The intervals will be restricted to a
family In of intervals of [0, 1] which may be the set of all intervals but for large n
will be a family of size of order n such as ones defined by multiresolution schemes.
The idea is to give an upper bound for the w(I, fn) and so to force the function fn

to be close to the data. The upper bound we use is based on the model (1) and is
based on the behaviour of the maximum of gaussian random variables. It leads to

max
I∈In

|w(I, fn)| ≤ σ
√

τ log(n). (7)

for some τ > 2. These bounds hold asymptotically for every τ > 2 if the data were
generated according to (1) with fn = f . To be of use we must quantify the noise
level corresponding to σ. We put

σn =
1.483√

2
Median{|y(t2) − y(t1)|, . . . , |y(tn) − y(tn−1)|} (8)

(see Section 5.4 of Donoho and Johnstone (1995)) which together with the default
value τ = 2.3 leads to the approximation conditions

max
I∈In

|w(I, fn)| ≤ σn

√

2.3 log(n) (9)

(see Davies and Kovac (2001)).
The second part of the approach is to regularize the function fn subject to the

bounds (9). In Davies and Kovac (2001) it was proposed to minimize the number
of local extremes of fn subject to (9) and the taut string method was developed to
accomplish this. A smooth function can be obtained by minimizing for example

n
∑

i=3

(fn(ti−2) + fn(ti) − 2fn(ti−1))
2

subject to (9). Here for the sake of simplicity we have assumed that the ti lie
on a grid. We note that the monotonicity constraints derived from the taut string
solution can be incorporated if required. This gives rise to a quadratic programming
problem and the solution gives a very smooth regression function which is both close
to the data and has the correct monotonicity behaviour. The main problem is the
lack of numerical stability when the data show large variations in local behaviour
and unfortunately this makes the method unsuitable for general applications. We
refer to Majidi (2003) for further details.
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Figure 1: From top to bottom the non-parametric approximation and its first and
second derivatives. From left to right kernel approximation with local bandwidths,
AWS, wavelets and a smoothing spline.

3 Weighted splines and differentiable approxima-

tions

3.1 Weighted splines

The standard cubic smoothing spline is the unique solution of (4) for a given choice of
λ and as mentioned above there may well be no value of λ which gives a satisfactory
representation of the data. This reflects the inability of the smoothing spline to
adapt locally to the smoothness of the function. To overcome this problem we
propose the use of weighted smoothing splines defined as the solution of

minimize S(f, λ) :=
n
∑

i=1

λi(y(ti) − f(ti))
2 +

∫ 1

0

f (2)(t)2 dt (10)

for a given λ = (λ1, . . . , λn). If all the λi > 0 then the unique solution of the
minimization problem of (10) is a natural cubic spline which we denote by fn(· : λ).
We now explain how the weights λi are determined. We initialize λ to λ1 by setting
the λi to a small common value such that fn(· : λ1) is approximately linear. We then
check whether fn(· : λ1) is an adequate approximation in the sense of (9). If it is then
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we terminate the procedure and the regression function is simply fn(· : λ1). If some
of the inequalities of (9) are not satisfied we note all the values of i with ti in such
an interval and for these i we increase the λi by a factor q. Our default value for q is
2. We denote this new value of λ by λ2. If fn(· : λ2) is an adequate approximation
then the procedure terminates and fn(· , λ2) is the regression function. Otherwise
the procedure is continued until the first adequate approximation is found. It is
clear that the procedure will terminate because the function fn(· : λ) will almost
interpolate the data for large λi. For a more detailed description of the procedure
see Meise (2004).
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Figure 2: The left panel shows the weighted smoothing spline regression function
for the Doppler data. The right panels show the final values of the log(λi).

3.2 Examples

Figure 1 shows a sine curve contaminated by Gaussian noise together. The top
row shows, from left to right, a kernel estimator with local bandwidths, the AWS
estimator of Polzehl and Spokoiny, wavelets and the weighted smoothing spline. The
centre row shows the first derivatives and the bottom row the second derivatives.

It is evident from this figure and it is indeed the general case that wavelet meth-
ods and weighted smoothing splines perform best so in future we shall only compare
these two. This and each of the following examples was computed using the statis-
tics software R and additional available packages as aws, lokern and WaveThresh3
(Nason (1998)).

The second example is the Doppler data of Donoho and Johnstone (1995). Figure
2 shows the weighted smoothing reconstruction (left panel) and the final values of
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Figure 3: The upper row shows the second derivative of the smoothing spline re-
gression function for the first and last 200 observations of the Doppler data. The
bottom row shows the corresponding results for the wavelet reconstruction.

the λi (right panel). The top row of Figure 3 show the first and the last 200 values of
the second derivative of the weighted smoothing spline reconstruction. The second
row shows the corresponding values of the wavelet approximation.

The ti of Figures 1 and 2 are of the form ti = i2−k and were specifically chosen
with wavelets in mind. In general the ti will not form a grid and the number of
data points will not be a power of two. In this case the performance of weighted
smoothing splines is hardly impaired but the performance of the wavelet reconstruc-
tion deteriorates perceptibly. This is shown in Figure 4 where n = 100 and the ti
were chosen at random. For a description of the used irregular wavelet transform
see Kovac and Silverman (2000).
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Figure 4: An irregular spaced noisy sine of sample size 100. The upper left panel
shows the wavelet approximation and the upper right panel the weighted smoothing
spline. Second and third row show the corresponding first and second derivatives.
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Figure 5: Taut string approximation to the thinfilm data.

3.3 An example from thin-film physics

Figure 5 shows some data from thin-film physics together with the default taut
string approximation (Davies and Kovac (2001)). The data were kindly supplied by
Prof. Dieter Mergel of the University Duisburg-Essen and show the photon counts
of reflected X-rays as a function of the angle of deflection. Interest centres on the
location and the power of the peaks. As can be seen from Figure 5 the taut string
identifies the number and location of the peaks very well but the power is mote
complicated as it is to be measured from the slowly varying baseline evident in
Figure 5. We solve the problem by using the weighted spline approximation and
determine the baseline by the values of the first derivative. These are shown in
Figure 6. The upper panel shows the weighted spline approximation and the lower
panels shows the first derivative truncated to values to lie between 0.15 and -0.15.
Figure 7 shows the baseline.
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Figure 6: The weighted smoothing spline approximation to the thinfilm data and
its first derivative.

4 Heteroscedasticity and robustness

4.1 Nonparametric scale approximations

The ideas developed in the previous section can also be used to obtain nonparametric
approximations to data with varying scale. The model we use it

Y (t) = σ(t)Z(t), 0 ≤ t ≤ 1, Z(t) Gaussian white noise, (11)

and given data (ti, y(ti), i = 1, . . . , n we look for a representation y(ti) = σn(ti)r(ti)
where σn is simple and the r(ti) “look like” standard Gaussian white noise. The
concept of approximation we use is based on the sums

v(I, sn) =
∑

ti∈I

r(ti)
2 =

∑

ti∈I

y(ti)
2/σn(ti)

2 (12)
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Figure 7: Baseline approximation.

Under the model (11) these should “look like” chi-squared random variables with
|I| degrees of freedom. This leads to the following set of inequalities

qu((1 − γn)/2, |I|) ≤ v(I, σn) ≤ qu((1 + γn)/2, |I|), I ∈ I, (13)

where qu(γ, k) denote the γ−quantile of the chi-squared distribution with k degrees
of freedom. The default value of γn we use is

γn = 1 − exp(−1.15 log(n)) = 1 − n−1.15 (14)

which corresponds to the default choice of τ = 2.3 in (9). As we are looking for a
smooth approximating function s we consider the solution of the weighted smoothing
spline problem

minimize

n
∑

i=1

λi(|yi| − σn(ti))
2 +

∫ 1

0

σ(2)
n (t)2 dt. (15)

The local weights are data dependent and are chosen so that the solution s satisfies
(13). The procedure we use is similar to that described in Section 3.1 but with some
modifications. On intervals I where the inequality (13) is not satisfied we increase
the weights by a factor of q but we do this firstly for single observations, that is in-
terval of length one. When (13) is satisfied for all such intervals we consider intervals
of length two. When again all the inequalities are satisfied we move on to the next
longer intervals until finally all inequalities are satisfied. A similar procedure was
used in Davies and Kovac (2004) in the context of approximating spectral densities.
Figure 8 shows the result of the procedure applied to data generated according to
the model

Y (t) = sin(4πt)2Z(t). (16)
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Figure 8: The left panel shows data generated according to (16). The right panel
shows the generating curve sin(4πt)2 and the reconstruction using weighted splines.

The left panel shows the data and the right panel shows the generating curve and
the reconstruction.

4.2 Heteroscedastic data

We can combine the procedures of Sections 3.1 and 4.1 to deal with heteroscedastic
data. The model is

Y (t) = f(t) + σ(t)Z(t), 0 ≤ t ≤ 1. (17)

Given data (ti, y(ti)), i = 1, . . . , n we start by quantifying the noise. We put

v(ti) = |y(ti+1) − y(ti)|, i = 1, . . . , n − 1 (18)

and then apply the procedure of Section 4.1 to the points (ti, v(ti)), i = 1, . . . , n−1.
This gives a non-parametric approximation σn(ti) to the noise level of the v(ti). We
put

sn(ti) = σn(ti)/
√

2, 1 ≤ i ≤ n − 1; sn(tn) = σn(tn−1)/
√

2 (19)

to obtain an approximation to the noise level of the original data. We now replace
the w(I, fn) of (6) by

w(I, fn) =
1

√

|I|
∑

ti∈I

r(ti, fn)/sn(ti) (20)

and then use (9) as the definition of approximation. The procedure of Section 3.1
is now applied to the data (ti, y(ti)), i = 1, . . . , n.
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Figure 9: The robustified weighted spline procedure applied to a sine curve contam-
inated with cauchy noise.

4.3 Robust smoothing

A complete robustification of the procedure described in Section 3.1 would entail
replacing (10) by, for example,

minimize S(f, λ) :=
n
∑

i=1

λi|y(ti) − f(ti)| +
∫ 1

0

f (2)(t)2 dt, (21)

the definition of approximation (6) by

w̃(I, fn) =
1

√

|I|
∑

ti∈I

sgn(r(ti, fn)) (22)

and finally (9) by

max
I∈In

|w̃(I, fn)| ≤ σn

√

2 log(n) (23)

(see Kovac (2002)). A much simpler but reasonably effective method is the following.
The noise level σn is quantified by (8). A running median with a window width of
say five observations is applied to the data

m5(ti) := median(y(ti−2), y(ti−1), y(ti), y(ti+1), y(ti+2)

and any data point y(ti) for which

|y(ti) − m5(ti)| ≥ 3.5σn,
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is replaced by m5(ti) (see Hampel (1985)). The weighted splines procedure is now
applied to the cleaned data set. The procedure will work well as long as no group
of five successive observations contains more than two outliers. Figure 9 shows
the result of applying this robustified procedure to a sine curve contaminated with
Cauchy noise.

5 Approximations using kernels and local polyno-

mials

The techniques described above can also be applied to determining the local band-
widths hi for kernel and local polynomial approximations. For simplicity we describe
the method only for kernel approximations fk

n of the form

fk
n(t) =

∑n
i=1 y(ti)K

(

ti−t
h(t)

)

∑n
1 K

(

ti−t
h(t)

) . (24)

Here K : [0, 1] → R denotes a smooth symmetric kernel of the sort usually chosen
in this situation. We commence with constant bandwidths

h(t1) = . . . = h(tn) = h0

for some large h0, calculate the function fk
n,1 according to (24) and then the asso-

ciated residuals. If (9) holds the procedure terminates. Otherwise we reduce the
size of the local bandwidths h(ti) at all points ti which lie in intervals where (9)
does not hold to qh(ti). The default value we use for q is q = 0.8. This process is
repeated until (9) is satisfied for all intervals. Figure 10 shows the result using local
polynomials of order 1 applied to the Doppler data. The artefact close to t = 0.75 in
the upper left panel is due to the large discontinuity in the local bandwidths at this
point (lower left panel). If the bandwidths are smoothed but whilst still maintaining
(9) then the artefact disappears as may be seen from the upper right panel.

6 Image analysis and weighted thin plate splines

6.1 Weighted thin plate splines

We consider data (ti, y(ti)), i = 1, . . . , n2 with the ti of the form

ti = (ji/n, ki/n), ji, ki = 0, . . . , n − 1.

14
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Figure 10: Local polynomial (p=1) approximation with piecewise constant and
smoothed local bandwidth.

Corresponding to (10) we consider minimizing

S(f, λ) :=
n2

∑

i=1

λ(ti)(y(ti) − f(ti))
2 (25)

+

∫ 1

0

∫ 1

0

(

(

∂2f(s, t)

∂2s

)2

+

(

∂2f(s, t)

∂s∂t

)2

+

(

∂2f(s, t)

∂2t

)2
)

dsdt.

It can be shown that the solution is a natural thin plate spline. We refer to Green
and Silverman (1994).
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Figure 11: The original function (left) and the noisy data (right).

6.2 Approximation in two dimensions

The given a function fn the corresponding residuals are given by

r(ti, fn) = y(ti) − fn(ti), ti = (ji/n, ki/n), ji, ki = 0, . . . , n − 1. (26)

For a given family Cn of subsets C of [0, 1]2 we define their normalized sums by

w(C, fn) =
1

√

|C|
∑

ti∈C

r(ti, fn). (27)

which leads to the following definition of approximation

max
C∈Cn

|w(C, fn)| ≤ σn

√

4.6 log(n) (28)

where the factor 4.6 replaces the factor 2.3 in (9) as we now have n2 observations.
The noise level σn is defined

σn =
1.48

2
median(|y( ji+1

n
, ki+1

n
) − y(( ji+1

n
, ki

n
) − y( ji

n
, ki+1

n
) + y( ji

n
, ki

n
)|, i = 1, . . . , n2)

(29)
The quality of the results depends on the choice of Cn. If Cn contains too few sets
then the concept of approximation is too crude. We therefore require Cn to allow

fines divisions of [0, 1]2 and also to be such that the residuals (26) can be efficiently
calculated. Work in this direction has been done and we refer to Friedrich (2005).
Such a segmentation can for example be the subdivision of [0, 1]2 into all possible
squares, containing at least one point ti. This is the one we use here. Others are

possible and might also provide partitions bounded by line or arc segments.
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Figure 12: A normal thin plate approximation using GCV (left) and the automati-
cally weighted version.

6.3 An example

As a simple example we consider the function F : R
2 → R

F (x, y) = 10 exp(−x2 − 2y2) (30)

on a 50 × 50 grid on [−7, 4]2 with added normal noise, εi ∼ N(0, 1) (Figure 11).
The weighted thin plate approximation outperforms the procedure with a global
penalizing parameter chosen by generalized cross validation as is seen from Figure
12. The collection Cn of subsets used in this example was the set of all possible
squares containing at least one point ti. The main drawback of weighted thin plate
splines is the numerical difficulty of calculating them for larger grids. More work in
this direction is required.

7 Asymptotics

We consider the one- and the two-dimensional case, d ∈ {1, 2}, which can be written
in the form

minimize Sλ(f) :=
n
∑

i=1

λ(yi − fn(i))2 + f t
nΩnfn (31)

where Ωn is an n×n-non-negative definite matrix with eigenfunctions gni and corre-
sponding eigenvalues γni, 1 ≤ i ≤ n with γn1 = γn2 = 0. The remaining eigenvalues
satisfy the inequalities

c1
i4/d

n
≤ γni ≤ c2

i4/d

n
, 3 ≤ i ≤ n (32)

17



with the constants c1 and c2 being independent of n. We denote the corresponding
normalized eigenvectors by gni. For an interval I and squares respectively we denote
by θI the vector whose elements θi are 1/

√

|I| for i ∈ I and 0 otherwise. We see

that ‖θI‖ = 1 and for the solution f̃n of (31) the w(I, f̃n) of (6) are given by

w(I, f̃n) = θt
I(yn − f̃n), I ∈ I. (33)

We have

Theorem 7.1

(a) f̃ t
n(λ)Ωnf̃n(λ) is an increasing function of λ.

(b) E

(

f̃ t
n(λ)Ωnf̃n(λ)

)

≤ cnd/4λd/4+1 for some constant c.

(c) For all λ > 0, for In with |In| ≤ qn for some fixed q and for all τ > 2 we have

lim
n→∞

P

(

max
I∈In

|w(I, f̃n(λ))| ≤ σ
√

τ log(n)

)

= 1.

Proof. (a) The solution f̃n(λ) of (31) is given by

f̃n(λ) = λ(λIn + Ωn)−1yn

and on writing yn =
∑n

i=1 ηnigni we obtain

f̃ t
n(λ)Ωnf̃n(λ) = λ2

n
∑

i=3

η2
niγni

(λ + γni)2

from which the claim follows on noting that γni > 0 for i ≥ 3.

(b) We note that

f̃ t
n(λ)Ωn(λ)f̃n = λ2yt

n(λIn + Ωn)−1Ωn(λIn + Ωn)−1yn

and hence

E

(

f̃ t
n(λ)Ωnf̃n(λ)

)

= λ2f t
n(λIn + Ωn)−1Ωn(λIn + Ωn)−1fn

+E
(

λ2ǫt
n(λIn + Ωn)−1Ωn(λIn + Ωn)−1ǫn

)

.

Arguing as above we obtain

λ2f t
n(λIn + Ωn)−1Ωn(λIn + Ωn)−1fn = λ2

n
∑

3

α2
ni

γni

(λ + γni)2

≤
n
∑

3

α2
niγni = f t

nΩfn

18



and

E(λ2ǫt
n(λIn + Ωn)−1Ωn(λIn + Ωn)−1ǫn) = λ2

n
∑

3

γni

(λ + γni)2
.

On splitting the last summation into two parts, from i = 3 to i = nd/4λd/4 and from
i = nd/4λd/4 to i = n and on using (32) it follows that

E(λ2ǫt
n(λIn + Ωn)−1Ωn(λIn + Ωn)−1ǫn) ≤ cnd/4λd/4+1

for some constant c which completes the proof of the theorem.
(c) We have

yn − f̃n(λ) = (λIn + Ωn)−1Ωnyn.

and on writing yn = fn + ǫn we obtain

yn − f̃n(λ) = hn + δn (34)

with
hn = (λIn + Ωn)−1Ωnfn, δn = (λIn + Ωn)−1Ωnǫn. (35)

On writing

fn =
n
∑

1

αnigni

we obtain

hn =

n
∑

3

αni
γni

(λ + γni)
gni

and hence

‖hn‖2 =

n
∑

3

α2
ni

γ2
ni

(λ + γni)2
=

1

λ

n
∑

3

α2
ni

γ2
ni/λ

(1 + γni/λ)2
≤ 1

λ

n
∑

3

α2
niγni.

As f t
nΩnfn =

∑n
3 α2

niγni we see that at least asymptotically

‖hn‖2 ≤ 1

λ
f t

nΩ(d)
n fn. (36)

We turn to δn. We write

ǫn =

n
∑

1

Znigni

where, because of the transformation is orthonormal, the Zni are i.i.d. Gaussian
random variables with zero mean and variance σ2. It follows

δn =
n
∑

3

Zni
γni

(λ + γni)
gni

19



and on writing

θI =
n
∑

1

θnigni

we obtain

E((θt
Iδn)2) = σ2

n
∑

3

θ2
ni

(

γni

λ + γni

)2

≤ σ2.

The claim of the theorem follows from the usual upper bound for the tail of a Gaus-
sian distribution. �

We consider the following modified procedure. We consider the solutions f̃n(λ) of
(31) and determine the smallest value of λ for which the multiresolution conditions
(7) are fulfilled with f̃n = f̃n(λ). It follows from (c) of Theorem 7.1 this smallest
value is asymptotically with arbitrarily large probability smaller than any given λ0.
If we denote this solution by f̃n(λ∗

n) then it follows from (a) and (b) of Theorem 7.1
that

lim
n→∞

P

(

f̃ t
n(λ∗

n)Ωnf̃n(λ∗
n) ≤ cnd/4λ

d/4+1
0

)

= 1. (37)

Let f̂n be the solution obtained from the weighted splines procedure described in
Section 3 and 6 respectively. If

f̂ t
nΩ(d)

n f̂n ≤ f̃ t
n(λ∗

n)Ωnf̃n(λ∗
n)

then we accept f̂n and otherwise we accept f̃n(λ∗
n) and denote the solution by f ∗

n.

7.1 The one-dimensional case

For the one-dimensional case we have

Theorem 7.2 If f has a continuous second derivative then

lim
c→∞

lim
n→∞

P
(

‖f ∗
n − f‖n,∞ ≤ cn−1/3 log(n)1/3

)

= 1. (38)

Proof. Consider a point i0/n and an interval I which is such that i0 lies in the
central half of I. We firstly consider the case where f ∗

n(i/n) is either monotone
increasing or monotone decreasing for i ∈ I. We suppose that f ∗

n(i0/n) ≥ f(i0/n)
and that f ∗

n(i/n) is monotone increasing. The other three cases are deal analogously.
We have

|f ∗
n(i0/n) − f(i0/n)| = f ∗

n(i0/n) − f(i0/n) ≤ 1

4|I|
∑

i≥i0,i∈I

(f ∗
n(i/n) − f(i0/n))

20



and hence

|f ∗
n(i0/n) − f(i0/n)| ≤ 1

4|I|

(

∑

i≥i0,i∈I

(f ∗
n(i/n) − f(i/n) − ǫ(i/n))

+
∑

i≥i0,i∈I

i

n
f (1)(θii/n) +

∑

i≥i0,i∈I

ǫ(i/n)

)

with 0 < θi < 1. The first and last terms on the right-hand side are O(
√

|I| log(n))
because of (7) and limn→∞ σn = σ almost surely. The middle term is of order |I|2/n
as f (1) is bounded and we obtain

|f ∗
n(i0/n) − f(i0/n)| ≤ C

(
√

log(n)

|I| +
|I|
n

)

.

On choosing I so that |I| = n2/3(log(n))1/3 we obtain the rate (log(n)/n)1/3 . Suppose
now thatf ∗

n(i/n) is not monotone. In this case the first derivative of the spline has
a zero, say at t0, and we have

|f ∗(1)
n (t)| ≤

∫ t

t0

|f ∗(2)
n (u)| du

≤
√

|t − t0|
√

∫ 1

0

f
∗(2)
n (u)2 du

≤ c
√

|t − t0| n1/8

for sufficiently large n with high probability where we have used (37). From this we
obtain

f ∗
n(i/n) = f ∗

n(i0/n) + O

( |i − i0|
n

√

|I|n−3/8

)

and it follows arguing as before

|f ∗
n(i0/n) − f(i0/n)| ≤ C

(
√

log(n)

|I| +
|I|3/2

n11/8
+

|I|
n

)

.

On putting |I| = n2/3(log(n))1/3 we again obtain the (log(n)/n)1/3 rate of conver-
gence. �

7.2 The two-dimensional case

For the two-dimensional case we have with the corresponding definition of f ∗
n
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Theorem 7.3 If f has continuous partial derivatives of order 2 then

lim
c→∞

lim
n→∞

P
(

‖f ∗
n − f‖n,∞ ≤ cn−1/6 log(n)1/3

)

= 1. (39)

Proof. We have data Y (s, t), (s, t) ∈ [0, 1]2 generated by the model

Y (s, t) = f(s, t) + Z(s, t), (s, t) ∈ [0, 1]2 (40)

with Z(s, t) standard Gaussian white noise and evaluated on the grid {(i/n, j/n)}, i, j =
0, . . . , n − 1. Corresponding to (4) we have for any function g

Sλ(g) : =
n−1
∑

i,j=0

λ (Y (i/n, j/n) − g (i/n, j/n))2 +

∫ 1

0

∫ 1

0

(

∂2g(s, t)

∂s2
+

∂2g(s, t)

∂s∂t
+

∂2g(s, t)

∂t2

)2

ds dt (41)

which we write in the discrete form

S(g, λ) := (y − g)tΛn(y − g)t + gtΩng (42)

where

y = (y(0/n, 0/n), . . . , y((n − 1)/n, (n − 1)/n))t

g = (g(0/n, 0/n), . . . , g((n − 1)/n, (n − 1)/n))t

Λn = diag(λ(0/n, 0/n), . . . , λ((n − 1)/n, (n − 1)/n)

and the symmetric, non-negative definite (n + 1)2 × (n + 1)2−matrix Ωn is defined
by

gtΩng =
∑

i,j=2,n

(

∆11 (g (i/n, j/n))2 + ∆12 (g (i/n, j/n))2 + ∆22 (g (i/n, j/n))2)

with

∆11(g(i/n, j/n) = g(i/n, j/n) + g((i− 2)/n, j/n) − 2g((i− 1)/n, j/n) (43)

∆12(g(i/n, j/n) = g(i/n, j/n) + g((i− 1)/n, (j − 1)/n) − g((i − 1)/n, j/n)

−g(i/n, (j − 1)/n)(44)

∆22(g(i/n, j/n) = g(i/n, j/n) + g(i/n, (j − 2)/n) − 2g(i/n, (j − 1)/n). (45)

On writing

∆1(g(i/n, j/n) = g(i/n, j/n) − g((i− 1)/n, j/n)

∆2(g(i/n, j/n) = g(i/n, j/n) − g(i/n, (j − 1)/n)
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it follows with some manipulation that

g(i/n, j/n) = g(0, 0) + i∆1(g(1/n, j/n)) + j∆2(g(0, 1/n))

+
i
∑

ν=2

(i − ν + 1)∆11(g(ν/n, j/n))

+

j
∑

µ=2

(j − µ + 1)∆22(g(0, µ/n)). (46)

This implies

|g(i/n, j/n) − g(0, 0)| ≤ i|∆1(g(1/n, j/n))|+ j|∆2(g(0, 1/n))|

+i

i
∑

ν=2

|∆11(g(ν/n, j/n))|

+j

j
∑

µ=2

|∆22(g(0, µ/n))|

≤ i|∆1(g(1/n, j/n))|+ j|∆2(g(0, 1/n))|

+(i3/2 + j3/2)

(

n
∑

µ,ν=2

(

∆11(g(ν/n, µ/n))2

∆22(g(ν/n, µ/n))2
)

)1/2

(47)

Let f̃n be the thin-plate spine for the data with smoothing parameter λ. Then for
given ǫ > 0 we can choose γ below so that

P





∫ 1

0

∫ 1

0





(

∂2f̃n(s, t)

∂s2

)2

+

(

∂2f̃n(s, t)

∂s∂t

)2

+

(

∂2f̃n(s, t)

∂t2

)2


 ds dt ≤ γn



 ≥ 1−ǫ

(48)
and hence

n
∑

i,j=2

(

∆11(f̃n(i/n, j/n))2 + ∆22(f̃n(i/n, j/n))2
)

≤ γ/n (49)

with high probability. On substituting this into (47) we obtain

|f̃n(i/n, j/n) − f̃n(0, 0)| ≤ i|∆1(f̃n(1/n, j/n))| + j|∆2(f̃n(0, 1/n))|
+
√

γ(i3/2 + j3/2)/
√

n. (50)
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A similar argument shows

i|∆1(f̃n(1/n, j/n))| ≤ |f̃n(i/n, j/n) − f̃n(0, j/n)| + √
γi3/2/

√
n

≤ 2σn

√

log(n) +
√

γ i3/2/
√

n (51)

On putting i = ⌊(4σ2
n n log(n))

1/3⌋ we obtain

|∆1(f̃n(1/n, j/n))| = OP

(

(log(n))1/6 /n1/3
)

(52)

with a corresponding estimate for |∆2(f̃n(0, 1/n))|. On using these in (50) we obtain

|f̃n(i/n, j/n) − f̃n(0, 0)| ≤ OP

(

k (log(n))1/6 /n1/3 + k3/2/
√

n
)

(53)

with k = i + j. For the function f of the theorem we have

|f(i/n, j/n) − f(0, 0)| = O((i + j)/n) (54)

We have

|f̃n(0, 0) − f(0, 0)| =
1

(k + 1)2

∣

∣

∣

∣

∣

k
∑

i,j=0

(f̃n(0, 0) − f(0, 0))

∣

∣

∣

∣

∣

≤ 1

(k + 1)2

∣

∣

∣

∣

∣

k
∑

i,j=0

(f̃n(i/n, j/n) − f(i/n, j/n))

∣

∣

∣

∣

∣

+OP

(

k (log(n))1/6 /n1/3 + k3/2/
√

n
))

= OP

(

√

log(n)/k + k (log(n))1/6 /n1/3

+k3/2/
√

n
)

= OP

(

n−1/6(log(n))1/3
)

(55)

on putting k = O
(

(n log(n))1/6
)

. This applies for any point (i/n, j/n) and conse-
quently we have

sup
i,j

|f̃n(i/n, j/n) − f(i/n, j/n)| = OP

(

n−1/6(log(n))1/3
)

. (56)

Finally as f ∗
n is as least as smooth as f̃n it also satisfies (56) and this completes the

proof of the theorem. �
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