7,286 research outputs found

    Smoothed Functional Algorithms for Stochastic Optimization using q-Gaussian Distributions

    Full text link
    Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, specially when the objective is to improve the performance of a stochastic system. However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in literature, which include Gaussian, Cauchy and uniform distributions among others. This paper studies a new class of kernels based on the q-Gaussian distribution, that has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model

    Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms

    Full text link
    We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar et al., 2013), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on smoothed functional algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work and turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of several numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian (Bhatnagar, 2007) and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms (Ghoshdastidar et al., 2013).Comment: This is a longer of version of the paper with the same title accepted in Automatic

    q-Gaussian based Smoothed Functional Algorithm for Stochastic Optimization

    Full text link
    The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.Comment: 5 pages, 1 figur

    Online Sequential Monte Carlo smoother for partially observed stochastic differential equations

    Full text link
    This paper introduces a new algorithm to approximate smoothed additive functionals for partially observed stochastic differential equations. This method relies on a recent procedure which allows to compute such approximations online, i.e. as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. This online smoother cannot be used directly in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that a similar algorithm may still be defined for partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. We prove that this estimator is consistent and its performance are illustrated using data from two models

    Moment-Based Variational Inference for Markov Jump Processes

    Full text link
    We propose moment-based variational inference as a flexible framework for approximate smoothing of latent Markov jump processes. The main ingredient of our approach is to partition the set of all transitions of the latent process into classes. This allows to express the Kullback-Leibler divergence between the approximate and the exact posterior process in terms of a set of moment functions that arise naturally from the chosen partition. To illustrate possible choices of the partition, we consider special classes of jump processes that frequently occur in applications. We then extend the results to parameter inference and demonstrate the method on several examples.Comment: Accepted by the 36th International Conference on Machine Learning (ICML 2019
    corecore