46 research outputs found

    Phase Transition Behavior of Cardinality and XOR Constraints

    Full text link
    The runtime performance of modern SAT solvers is deeply connected to the phase transition behavior of CNF formulas. While CNF solving has witnessed significant runtime improvement over the past two decades, the same does not hold for several other classes such as the conjunction of cardinality and XOR constraints, denoted as CARD-XOR formulas. The problem of determining the satisfiability of CARD-XOR formulas is a fundamental problem with a wide variety of applications ranging from discrete integration in the field of artificial intelligence to maximum likelihood decoding in coding theory. The runtime behavior of random CARD-XOR formulas is unexplored in prior work. In this paper, we present the first rigorous empirical study to characterize the runtime behavior of 1-CARD-XOR formulas. We show empirical evidence of a surprising phase-transition that follows a non-linear tradeoff between CARD and XOR constraints

    Phase Transition Behavior of Cardinality and XOR Constraints

    Get PDF
    The runtime performance of modern SAT solvers is deeply connected to the phase transition behavior of CNF formulas. While CNF solving has witnessed significant runtime improvement over the past two decades, the same does not hold for several other classes such as the conjunction of cardinality and XOR constraints, denoted as CARD-XOR formulas. The problem of determining satisfiability of CARDXOR formulas is a fundamental problem with wide variety of applications ranging from discrete integration in the field of artificial intelligence to maximum likelihood decoding in coding theory. The runtime behavior of random CARD-XOR formulas is unexplored in prior work. In this paper, we present the first rigorous empirical study to characterize the runtime behavior of 1-CARD-XOR formulas. We show empirical evidence of a surprising phase-transition that follows a non-linear tradeoff between CARD and XOR constraints

    Random CNF-XOR Formulas

    Get PDF
    Boolean Satisfiability (SAT) is fundamental in many diverse areas such as artificial intelligence, formal verification, and biology. Recent universal-hashing based approaches to the problems of sampling and counting crucially depend on the runtime performance of specialized SAT solvers on formulas expressed as the conjunction of both k-CNF constraints and variable-width XOR constraints (known as CNF-XOR formulas), but random CNF-XOR formulas are unexplored in prior work. In this work, we present the first study of random CNF-XOR formulas. We prove that a phase-transition in the satisfiability of random CNF-XOR formulas exists for k=2 and (when the number of k-CNF constraints is small) for k>2. We empirically demonstrate that a state-of-the-art SAT solver scales exponentially on random CNF-XOR formulas across many clause densities, peaking around the empirical phase-transition location. Finally, we prove that the solution space of random CNF-XOR formulas 'shatters' at all nonzero XOR-clause densities into well-separated components

    Wiring Switches to Light Bulbs

    Get PDF
    Given n buttons and n bulbs so that the ith button toggles the ith bulb and at most two other bulbs, we compute the sharp lower bound on the number of bulbs that can be lit regardless of the action of the buttons.Comment: 19 pages, 14 figure

    Phase coexistence and finite-size scaling in random combinatorial problems

    Full text link
    We study an exactly solvable version of the famous random Boolean satisfiability problem, the so called random XOR-SAT problem. Rare events are shown to affect the combinatorial ``phase diagram'' leading to a coexistence of solvable and unsolvable instances of the combinatorial problem in a certain region of the parameters characterizing the model. Such instances differ by a non-extensive quantity in the ground state energy of the associated diluted spin-glass model. We also show that the critical exponent ν\nu, controlling the size of the critical window where the probability of having solutions vanishes, depends on the model parameters, shedding light on the link between random hyper-graph topology and universality classes. In the case of random satisfiability, a similar behavior was conjectured to be connected to the onset of computational intractability.Comment: 10 pages, 5 figures, to appear in J. Phys. A. v2: link to the XOR-SAT probelm adde

    Tight Thresholds for Cuckoo Hashing via XORSAT

    Full text link
    We settle the question of tight thresholds for offline cuckoo hashing. The problem can be stated as follows: we have n keys to be hashed into m buckets each capable of holding a single key. Each key has k >= 3 (distinct) associated buckets chosen uniformly at random and independently of the choices of other keys. A hash table can be constructed successfully if each key can be placed into one of its buckets. We seek thresholds alpha_k such that, as n goes to infinity, if n/m <= alpha for some alpha < alpha_k then a hash table can be constructed successfully with high probability, and if n/m >= alpha for some alpha > alpha_k a hash table cannot be constructed successfully with high probability. Here we are considering the offline version of the problem, where all keys and hash values are given, so the problem is equivalent to previous models of multiple-choice hashing. We find the thresholds for all values of k > 2 by showing that they are in fact the same as the previously known thresholds for the random k-XORSAT problem. We then extend these results to the setting where keys can have differing number of choices, and provide evidence in the form of an algorithm for a conjecture extending this result to cuckoo hash tables that store multiple keys in a bucket.Comment: Revision 3 contains missing details of proofs, as appendix

    The Satisfiability Threshold for k-XORSAT

    Get PDF
    We consider "unconstrained" random kk-XORSAT, which is a uniformly random system of mm linear non-homogeneous equations in F2\mathbb{F}_2 over nn variables, each equation containing k3k \geq 3 variables, and also consider a "constrained" model where every variable appears in at least two equations. Dubois and Mandler proved that m/n=1m/n=1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT. We show that m/n=1m/n=1 remains a sharp threshold for satisfiability of constrained kk-XORSAT for every k3k\ge 3, and we use standard results on the 2-core of a random kk-uniform hypergraph to extend this result to find the threshold for unconstrained kk-XORSAT. For constrained kk-XORSAT we narrow the phase transition window, showing that mnm-n \to -\infty implies almost-sure satisfiability, while mn+m-n \to +\infty implies almost-sure unsatisfiability.Comment: Version 2 adds sharper phase transition result, new citation in literature survey, and improvements in presentation; removes Appendix treating k=
    corecore