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ABSTRACT

Random CNF-XOR Formulas

by

Jeffrey Dudek

Boolean Satisfiability (SAT) is fundamental in many diverse areas such as arti-

ficial intelligence, formal verification, and biology. Recent universal-hashing based

approaches to the problems of sampling and counting crucially depend on the run-

time performance of specialized SAT solvers on formulas expressed as the conjunction

of both k-CNF constraints and variable-width XOR constraints (known as CNF-XOR

formulas), but random CNF-XOR formulas are unexplored in prior work.

In this work, we present the first study of random CNF-XOR formulas. We

prove that a phase-transition in the satisfiability of random CNF-XOR formulas ex-

ists for k = 2 and (when the number of k-CNF constraints is small) for k > 2. We

empirically demonstrate that a state-of-the-art SAT solver scales exponentially on

random CNF-XOR formulas across many clause densities, peaking around the em-

pirical phase-transition location. Finally, we prove that the solution space of random

CNF-XOR formulas ‘shatters’ at all nonzero XOR-clause densities into well-separated

components.
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Chapter 1

Introduction

The Boolean-Satisfaction Problem (SAT) is the problem of determining if a given

propositional formula is satisfiable. SAT is one of the most fundamental problems in

computer science, with a wide range of applications arising from diverse areas such as

artificial intelligence, programming languages, formal verification and the like [1, 2].

The related problems of Constrained Counting and Constrained Sampling have found

a wide range of applications in probabilistic reasoning, machine learning, statistical

physics, verification, and other areas [3–6]. Given an input propositional formula, the

problem of constrained counting is to count the number of satisfying assignments;

the problem of constrained sampling is to generate satisfying assignments uniformly

at random. Although these problems are computationally intractable in their exact

form (in particular, they are #P-Complete) [7,8], recent hashing-based techniques [9–

13] have emerged to compute approximate solutions to constrained counting and

sampling problems. Unlike previous approaches to sampling and counting, hashing-

based approaches provide strong theoretical approximation guarantees and scale to

real-world instances involving formulas with hundreds of thousands of variables [13].

These hashing-based approaches for constrained sampling and counting employ

SAT solvers to solve formulas naturally expressed as the conjunction of both CNF-

clauses and XOR-clauses, known as CNF-XOR formulas [10]. In particular, the CNF-

clauses are generated from the input to the constrained counting/sampling algorithm

while the XOR-clauses are incrementally sampled by a stochastic process. While
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initial work [9] sampled XOR-clauses each with a fixed number of variables, recent

work [10–13] obtained tighter approximations through the use of longer variable-width

XOR-clauses, where the number of variables in each clause is stochastic. Although

XOR formulas can be solved individually in polynomial time (using, e.g., Gaussian

Elimination [14]), XOR formulas are empirically hard [15] for SAT solvers without

equivalence reasoning or similar techniques. The rise of applications for CNF-XOR

formulas has motivated the development of specialized CNF-XOR solvers, such as

CryptoMiniSAT [16], that combine SAT-solving techniques with algebraic techniques

and so can reason simultaneously about about both the CNF-clauses and XOR-clauses

within a single CNF-XOR formula. Understanding the runtime of these specialized

CNF-XOR solvers on CNF-XOR formulas is key to understanding the runtime be-

havior of hashing-based algorithms for constrained sampling and counting.

A large body of work explains the runtime performance of modern SAT solvers

through analysis on random problems [17], motivated by the desire to study the

“typical” hardness of SAT problems. Despite the abundance of prior work on the

behavior of SAT solvers on random fixed-width (where each clause contains a fixed

number of literals) CNF-formulas and on certain other classes of random formulas,

no prior work considers the behavior of SAT solvers on CNF-XOR formulas. We

believe that analysis of the behavior of SAT solvers on random CNF-XOR formulas

is the first step towards demystifying the runtime behavior of specialized CNF-XOR

SAT solvers and thus explaining the runtime behavior of hashing-based algorithms

for constrained sampling and counting.

In the remainder of this chapter, we briefly review motivating factors and previous

work on random SAT formulas.
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1.1 Analysis of Random SAT Formulas

All known SAT-solving algorithms are exponential in the worst case. Nevertheless,

state-of-the-art SAT solvers can now routinely find solutions to practical problems

with millions of variables [18]. Instead of focusing on the hardness of the most diffi-

cult SAT formulas, random SAT formulas have historically been studied in an effort

to understand the hardness of “typical” SAT formulas and thus better understand

the practical performance of modern SAT-solving algorithms [19,20]. Indeed, insights

gleaned from the study of random SAT instances have led to several dramatic improve-

ments in SAT-solving algorithms (e.g., the introduction of random-restarts [21]).

Of particular practical and theoretical interest is the analysis of random fixed-

width CNF formulas, beginning in [22]. Early experiments [23–25] revealed a con-

nection between the density of random CNF formulas and the runtime behavior of

SAT solvers on such formulas. In particular, the runtime of SAT solvers (using DPLL

and related algorithms) on random CNF formulas was shown to follow an easy-hard-

easy pattern [25]: the runtime is low when the clause density is very low or very high

and peaks around a fixed density, the location of which depends only on the clause

width. This peak in SAT solver runtime is paired with a precipitous drop, believed

to be a phase-transition, in the probability of satisfiability of random CNF formu-

las. Establishing this phase-transition in satisfiability analytically has been highly

challenging [26], and it has been established only for for k = 2 [27, 28] and all large

enough k [29].

Further analysis of the relationship between the clause density and SAT solver

runtime revealed a more nuanced picture of the scaling behavior of SAT solvers on

random fixed-width CNF instances. In particular, a secondary phase-transition was

observed within the satisfiable region, where the median runtime transitions from
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polynomial to exponential in the number of variables for several SAT-solving algo-

rithms [30]. Theoretical analysis of this phenomenon [31–33] has shown that the

solution space of a random fixed-width CNF formula dramatically “shatters” at this

secondary phase-transition into a solution space known to be difficult for a variety of

SAT-solving algorithms [34,35].

The goal of this thesis is to apply the techniques described above to random

CNF-XOR formulas, a new class of random SAT formulas. Though this analysis, we

hope to understand the behavior of specialized CNF-XOR solvers on typical CNF-

XOR formulas and so explain the runtime behavior of hashing-based algorithms for

constrained counting and sampling in practice.

1.2 Contributions

The main contribution of this thesis is a first study of random CNF-XOR formulas.

We define a class of random k-CNF-XOR formulas with both fixed-width CNF

clauses (i.e., k-clauses) and variable-width XOR-clauses, motivated by hashing-based

approaches to constrained sampling and counting.

We present the first study of phase-transition phenomenon in the satisfiability of

random k-CNF-XOR formulas. In particular, we present experimental evidence for

a k-CNF-XOR phase-transition that follows a linear trade-off between k-clauses and

XOR-clauses. We prove that the k-CNF-XOR phase-transition exists when the ratio

of k-clauses to variables is small. Notably, this fully characterizes the phase-transition

when k = 2.

We present the first study of the runtime behavior of CNF-XOR solvers on ran-

dom k-CNF-XOR formulas. In particular, we present experimental evidence that the

runtime of the specialized CNF-XOR solver CryptoMiniSAT scales exponentially in the
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number of variables, even when both the CNF and XOR subformulas are separately

solvable in polynomial time by CryptoMiniSAT. We show that the runtime peaks near

the empirical phase-transition location for random k-CNF-XOR formulas. Moreover,

we show that the solution space geometry of random CNF-XOR formulas is known

to be difficult for many SAT-solving algorithms.

1.3 Organization

The remainder of this thesis is organized as follows.

Chapter 2 presents notation and describes related work both on random CNF

formulas and on random XOR formulas. It formally defines the notion of a random

k-CNF-XOR formula.

Chapter 3 discusses phase-transition phenomena in the satisfiability of random

k-CNF-XOR formulas, covering both empirical evidence and theoretical analysis.

Chapter 4 discusses the runtime scaling behavior of a specialized SAT solver,

CryptoMiniSAT, on random k-CNF-XOR formulas. It begins to explain the runtime

scaling behavior (in the satisfiable region) through analysis of the solution-space ge-

ometry of random k-CNF-XOR formulas.

Finally, Chapter 5 summarizes the main contributions of this thesis and describes

several possible future directions.
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Chapter 2

Preliminaries

In this chapter, we introduce notations and preliminaries needed to present and un-

derstand our work. We begin with some basic notations.

2.1 Notations

Let X = {X1, · · · , Xn} be a set of propositional variables and let F be a formula

defined over X. A satisfying assignment or solution of F is an assignment of truth

values to the variables in X such that F evaluates to true. The solution space of

F is the set of all satisfying assignments. Let #F denote the number of satisfying

assignments of F . We say that F is satisfiable (or sat.) if #F > 0 and that F is

unsatisfiable (or unsat.) if #F = 0.

We describe the solution space of F using terminology from Achlioptas and Molloy

[36]. Two satisfying assignments σ and τ of F are d-connected, for a real number d, if

there exists a sequence of solutions σ, σ′, · · · , τ of F such that the Hamming distance

of every two successive elements in the sequence is at most d. A subset S of the

solution space of F is a d-cluster if every σ, τ ∈ S is d-connected. Two subsets S, S ′

of the solution space of F are d-separated if every pair σ ∈ S and τ ∈ S ′ is not d-

connected. Moreover, we say that F is d-separated if the Hamming distance between

every pair of solutions of F is at least d.

If g(n) is a function of n, we use O(g(n)) as shorthand for some function g′(n) ∈
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O(g(n)) and use Ω(g(n)) as shorthand for some function g′′(n) ∈ Ω(g(n)) (where the

choice of g′(n) and g′′(n) is independent of n).

We use Pr [X] to denote the probability of event X. We say that an infinite

sequence of random events E1, E2, · · · occurs with high probability (denoted, w.h.p.)

if lim
n→∞

Pr [En] = 1. We use E [Y ] to denote the expected value of a random variable

Y .

2.2 Prior Work on k-CNF formulas

A k-clause (or CNF-clause) is the disjunction of k literals out of {X1, · · · , Xn}, with

each variable possibly negated. For fixed positive integers k and n and a nonnegative

real number r (known as the k-clause density), let the random variable Fk(n, rn)

denote the formula consisting of the conjunction of drne k-clauses, each chosen uni-

formly and independently from all
(
n
k

)
2k possible k-clauses over n variables.

The early experiments on Fk(n, rn) [23–25] led to the following conjecture:

Conjecture 1 (Satisfiability Phase-Transition Conjecture). For every integer k ≥ 2,

there is a critical ratio rk such that:

1. If r < rk, then Fk(n, rn) is satisfiable w.h.p.

2. If r > rk, then Fk(n, rn) is unsatisfiable w.h.p.

The Conjecture was quickly proved for k = 2, where r2 = 1 [27, 28]. In recent

work, Ding, Sly, and Sun established the Satisfiability Phase Transition Conjecture

for all sufficiently large k [29]. The Conjecture has remained elusive for small values

of k ≥ 3, although values for these critical ratios rk can be estimated experimentally

(e.g., r3 seems to be near 4.26) and predicted analytically using techniques from

statistical physics [37].



8

When the k-clause density is small (e.g. below 2k ln(k)/k) there are algorithms

that are known to solve Fk(n, rn) with high probability in polynomial time [38]. No

algorithm is known that can solve Fk(n, rn) in polynomial time when the clause

density is larger, even when Fk(n, rn) is still expected to have exponentially many

solutions [33]. The solution space of Fk(n, rn) can also be characterized in the satisfi-

able region. In particular, for every k ≥ 8 there exists some k-clause density r where

w.h.p. Fk(n, rn) is satisfiable and almost all of the solution space of Fk(n, rn) can

be partitioned into exponentially many O(n)-clusters such that each pair of clusters

is Ω(n)-separated [33]. This ‘shattering’ of the solution space into linearly separated

clusters is known to be difficult for a variety of SAT algorithms [34,35].

2.3 Prior Work on XOR formulas

An XOR-clause over n variables is the ‘exclusive or’ of either 0 or 1 together with

a subset of the variables X1, · · · , Xn. An XOR-clause including 0 (respectively, 1)

evaluates to true if and only if an odd (respectively, even) number of the included

variables evaluate to true. For a fixed positive integer n and a nonnegative real

number p, a random XOR-clause with variable-probability p is an XOR clause A

chosen so that each Xi is included in A independently with probability p and 1 is

included in A independently with probability 1/2. Note that all k-clauses contain

exactly k variables, whereas the number of variables in an XOR-clause is not fixed; a

random XOR-clause chosen with variable-probability p over n variables contains pn

variables in expectation.

For a fixed positive integer n, a nonnegative real number s (known as the XOR-

clause density), and a nonnegative real number p (known as the XOR variable-

probability), let the random variable Qp(n, sn) denote the formula consisting of the
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conjunction of dsne XOR-clauses, with each clause an independently chosen random

XOR-clause with variable-probability p. Creignou and Daude [39,40] proved a phase-

transition in the satisfiability of Q1/2(n, sn): if s < 1 then Q1/2(n, sn) is satisfiable

w.h.p., while if s > 1 then Q1/2(n, sn) is unsatisfiable w.h.p. The solution space

geometry of Qp(n, sn) has not been characterized in prior work.

The random variableQ1/2(n, sn) matches the XOR-clauses used in several hashing-

based constrained sampling and counting algorithms [10]. Recent work [12] has also

made use of Qp(n, sn) with p < 1/2 for constrained sampling and counting algorithms.

There is a related model of random fixed-width `-XOR formulas where every

XOR-clause contains exactly ` variables. Creignou and Daudé [40] also proved the

existence of a phase transition for random `-XOR formulas (where each XOR-clause

contains exactly ` literals), for ` ≥ 1, without specifying an exact location for the

phase-transition. Dubois and Mandler [41] independently identified the location of a

phase transition for random 3-XOR formulas. More recently, Pittel and Sorkin [42]

identified the location of the phase-transition for `-XOR formulas for ` > 3. For

`-XOR formulas, w.h.p. the solution space can be partitioned into a set of O(log n)-

clusters such that each pair of clusters is Ω(n)-separated [36,43].

2.4 Defining CNF-XOR formulas

A CNF-XOR formula (respectively, k-CNF-XOR formula) is the conjunction of some

number of CNF-clauses (respectively, k-clauses) and XOR-clauses. For fixed positive

integers k and n and fixed nonnegative real numbers r and s, let the random variable

ψpk(n, rn, sn) denote the formula consisting of the conjunction of drne k-clauses, each

chosen uniformly and independently from all possible k-clauses over n variables, and

dsne independently chosen XOR-clauses with variable-probability p. (The motivation



10

for using fixed-width CNF-clauses and variable-width XOR-clauses comes from the

hashing-based approaches to constrained sampling and counting discussed in Chapter

1.) Although random k-CNF formulas and XOR formulas have been well studied

separately, no prior work considers the satisfiability of random mixed formulas arising

from conjunctions of k-clauses and XOR-clauses.

2.5 Experimental Setup

In this thesis, we explore empirically the behavior of CNF-XOR solvers on randomly

constructed k-CNF-XOR formulas. To do this, we built a prototype implementation

in Python that employs the CryptoMiniSAT∗ [16] solver to check satisfiability of ran-

dom k-CNF-XOR formulas. We chose CryptoMiniSAT because it is typically used in

hashing-based approaches to sampling and counting due to its ability to handle the

combination of k-clauses and XOR-clauses efficiently [44].

The objective of the experimental setup is to empirically determine the behavior

of CryptoMiniSAT on checking satisfiability of ψpk(n, rn, sn) with respect to n (the

number of variables), r (the k-clause density), s (the XOR-clause density), and p

(the XOR variable-probability) for fixed k. In particular, we aim to estimate both

(in Chapter 3) the probability that ψpk(n, rn, sn) is satisfiable and (in Chapter 4) the

median solve time for CryptoMiniSAT on ψpk(n, rn, sn).

To uniformly choose a k-clause we uniformly selected without replacement k out

of the variables {X1, · · · , Xn}. For each selected variable Xi, we include exactly one

of the literals Xi or ¬Xi in the k-clause, each with probability 1/2. The disjunction

of these k literals is a uniformly chosen k-clause. To choose an XOR-clause with

∗http://www.msoos.org/cryptominisat4/
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variable-probability p, we include each variable of {X1, · · · , Xn} with probability p in

a set A of variables. We also include in A exactly one of 0 or 1, each with probability

1/2. The ‘exclusive-or’ of all elements of A is a random XOR-clause with variable-

probability p.

To empirically estimate both the probability that ψpk(n, rn, sn) is satisfiable and

the median runtime of CryptoMiniSAT on ψpk(n, rn, sn), we evaluated satisfiability, us-

ing CryptoMiniSAT, of 100 uniformly generated formulas of ψpk(n, rn, sn) by construct-

ing the conjunction of drne k-clauses and dsne XOR-clauses (with variable-probability

p), with each clause chosen independently as described above. The solving of each

formula was individually timed. The percentage of satisfiable formulas gives us an em-

pirical estimate of Pr [ψpk(n, rn, sn) is satisfiable]. The median runtime is an estimate

for the median CryptoMiniSAT solve time on k-CNF-XOR formulas with parameters

(k, p, n, r, s).

All experiments were run on a node within a high-performance computer cluster.

These nodes contain 12-processor cores at 2.83 GHz each with 48 GB of RAM per

node.
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Chapter 3

Phase-Transition Phenomena

As introduced in Chapter 1, there is a deep connection between the runtime behavior

of SAT solvers on random CNF formulas and on the probability that such random

formulas are satisfiable. The key experimental findings [23–25] are: (1) as the density

(ratio of clauses to variables) of random CNF instances increases, the probability

of satisfiability decreases with a precipitous drop, believed to be a phase-transition,

around the point where the probability of satisfiability is 0.5, and (2) instances at the

phase-transition point are particularly challenging for DPLL-based SAT solvers. In-

deed, phase-transition instances serve as a source of difficult benchmark problems in

SAT competitions [45]. The connection between runtime performance and the satisfi-

ability phase-transition has propelled the study of such phase-transition phenomena

over the past two decades [19].

For random k-CNF formulas, where every clause contains exactly k literals, ex-

periments suggest a specific phase-transition density (for example, density 4.26 for

random 3-CNF formulas), but establishing this analytically has been highly challeng-

ing [26], and it has been established only for for k = 2 [27, 28] and all large enough

k [29]. A phase-transition phenomenon has also been identified in random XOR

formulas (with variable-probability 1
2
) at density 1 [39].

Despite the abundance of prior work on the phase-transition phenomenon in

the satisfiability of random k-CNF formulas and random XOR formulas, no prior

work considers the satisfiability of random k-CNF-XOR formulas. Since the phase-
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transition behavior of k-CNF constraints have been analyzed to explain runtime be-

havior of SAT solvers [20], analysis of the phase-transition phenomenon for random

k-CNF-XOR formulas is the first step towards demystifying the runtime behavior of

CNF-XOR solvers (e.g., CryptoMiniSAT [16]) and thus explaining the runtime behav-

ior of hashing-based algorithms.

In the remainder of this chapter, we present the first study of phase-transition

phenomenon in the satisfiability of random k-CNF-XOR formulas, henceforth referred

to as the k-CNF-XOR phase-transition. In particular:

1. We present (in Section 3.2) experimental evidence for a k-CNF-XOR phase-

transition following a linear trade-off between k-CNF clauses and XOR clauses.

2. We prove (in Section 3.3) that the k-CNF-XOR phase-transition exists when

the ratio of k-CNF clauses to variables is small. This fully characterizes the

phase-transition when k = 2.

3. We prove (in Section 3.3) upper and lower bounds on the location of the k-

CNF-XOR phase-transition region.

4. We conjecture (in Section 3.4) that the exact location of a phase-transition

for k ≥ 3 follows the linear trade-off between k-CNF and XOR clauses seen

experimentally.

3.1 Experimental Setup

We used the experimental setup described in Section 2.5 to explore empirically the

satisfiability of random k-CNF-XOR formulas. In particular, the objective of the

experimental setup is to empirically determine the behavior of Pr [ψpk(n, rn, sn) is sat]
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with respect to r and s, the k-clause and XOR-clause densities respectively, for fixed

k, p, and n.

We ran 55 experiments with various values of k, p, and n. The value of p ranged

over p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, independently of k and n. For k = 2, we ran experi-

ments for n ∈ {25, 50, 100, 150}. For k = 3, we ran experiments for n ∈ {25, 50, 100}.

For k = 4 and k = 5, we ran experiments for n ∈ {25, 50}. We were not able to

run experiments for values of n significantly larger than those listed above: at some

k-clause and XOR-clause densities, the run-time of CryptoMiniSAT scaled far beyond

our computational capabilities.

In each experiment, the XOR-clause density s ranged from 0 to 1.2 in increments

of 0.02. Since the location of phase-transition for k−CNF depends on k, the range

of k-clause density r also depends on k. For k = 3, r ranged from from 0 to 6 in

increments of 0.04; for k = 5, r ranged from 0 to 26 in increments of 0.43, and the like.

For each assignment of values to k, p, r, s, and n, we used the experimental setup

described in Section 2.5 to estimate the probability that ψpk(n, rn, sn) is satisfiable.

All formulas were given a timout of 1000 seconds.

3.2 Experimental Results

We present scatter plots demonstrating the behavior of satisfiability of k-CNF-XOR

formulas. We present here results only for the six experiments when p ∈ {0.2, 0.5}

and (k, n) ∈ {(2, 150), (3, 100), (5, 50)}. ∗.

The plots for k = 2, 3 and 5 are shown in Figures 3.1 and 3.2, Figures 3.3 and

3.4, and Figures 3.5 and 3.6 (respectively, for p = 0.5 and p = 0.2).

∗The data from all experiments is available at http://www.cs.rice.edu/CS/Verification/

Projects/CUSP/
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Figure 3.1 : Phase transition for 2-CNF-XOR formulas (p = 0.5)
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Figure 3.2 : Phase transition for 2-CNF-XOR formulas (p = 0.2)
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Figure 3.3 : Phase transition for 3-CNF-XOR formulas (p = 0.5)
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Figure 3.4 : Phase transition for 3-CNF-XOR formulas (p = 0.2)
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Figure 3.5 : Phase transition for 5-CNF-XOR formulas (p = 0.5)
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Figure 3.6 : Phase transition for 5-CNF-XOR formulas (p = 0.2)
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Each figure is a 2D plot, representing the observed probability that ψpk(n, rn, sn)

is satisfiable as the density of k-clauses r and the density of XOR-clauses s varies.

The x-axis indicates the density of k-clauses r. The y-axis indicates the density of

XOR-clauses s. The dark (respectively, light) regions represent clause densities where

almost all (respectively, no) sampled formulas were satisfiable.

Note that ψpk(n, rn, sn) consists only of XOR clauses when r = 0. Examining

the figures along the line r = 0 the phase-transition location is around (r = 0,

s = 1), which matches previous theoretical results on the phase-transition for XOR

formulas [39]. Likewise, ψpk(n, rn, 0) = Fk(n, rn) and, by examining the figures along

the line s = 0, we observe phase-transition locations that match previous studies on

the phase-transition for k-CNF formulas for k = 2, 3, and 5 [19]. Note that the

phase-transition we observe for 2-CNF formulas is slightly above the true location at

s = 1 [27,28]; the correct phase-transition point for 2-CNF formulas is observed only

when the number of variables is above 4096 [46].

In all the plots, we observe a large triangular region where the probability that

ψpk(n, rn, sn) is satisfiable is nearly 1. We likewise observe a separate region where the

observed probability that ψpk(n, rn, sn) is satisfiable is nearly 0. More surprisingly,

the shared boundary between the two regions for large areas of the plots seems to be

a constant-slope line. A closer examination of this line at the bottom-right corners

of the figures for k = 2 and k = 3, where the k-clause density is large, reveals that

the line appears to “kink” and abruptly change slope. We discuss this further in

Section 3.4.

Notice that in all cases the plots for p = 0.5 and for p = 0.2, for identical values of

n and k, are nearly identical. This suggests that the location of the phase-transition

is independent of the XOR variable-probability.
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3.3 Establishing a Phase-Transition

The experimental results presented in Section 3.2 empirically demonstrate the exis-

tence of a k-CNF-XOR phase-transition. Theorem 3.1 shows that the k-CNF-XOR

phase-transition exists when the density of k-clauses is small. In particular, the func-

tion φk(r) (defined in Lemma 3.3) gives the location of a phase-transition between a

region of satisfiability and a region of unsatisfiability in random k-CNF-XOR formu-

las. Moreover, this location is independent of p.

Theorem 3.1 (k-CNF-XOR Phase-Transition Theorem). Let k ≥ 2. There is a

function φk(r), a constant αk ≥ 1, and a countable set of real numbers Ck (all defined

in Lemma 3.3) such that for all p ∈ (0, 1/2], r ∈ [0, αk)\Ck, and s ≥ 0:

(a). If s < φk(r), then w.h.p. ψpk(n, rn, sn) is satisfiable.

(b). If s > φk(r), then w.h.p. ψpk(n, rn, sn) is unsatisfiable.

Proof. Part (a) follows directly from Lemma 3.9. Part (b) follows directly from

Lemma 3.14. The proofs of these lemmas are presented in Sections 3.3.1 and 3.3.2

respectively.

φk(r) is the free-entropy density of k-CNF, drawing on concepts from spin-glass

theory [47]. From the expression for φk(r) in Lemma 3.3, it is easily verified that

φk(0) = 1 and that φk(r) is a monotonically decreasing function of r. Thus when

the k-clause density (r) is 0, Theorem 3.1 says that an XOR-clause density of 1 is

a phase-transition for XOR-formulas (independently of the XOR variable-probability

p), matching previously known results for p = 1/2 [39]. As the k-clause density

increases, φ(r) is decreasing and so the XOR-clause density required to reach the

phase-transition decreases.
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Theorem 3.1 fully characterizes the random satisfiability of ψpk(n, rn, sn) when

r < 1. In the case k = 2, prior results on random 2-CNF satisfiability characterize

the rest of the region. If r > 1, then F2(n, rn) is unsatisfiable w.h.p. [27, 28] and

so the 2-clauses within ψp2(n, rn, sn) are unsatisfiable w.h.p. without considering the

XOR-clauses. Therefore ψp2(n, rn, sn) is unsatisfiable w.h.p. if r > 1. This, together

with Theorem 3.1, proves that φ2(r) is the complete location of the 2-CNF-XOR

phase-transition.

Moreover, Lemma 3.4 shows that αk ≥ (1−ok(1))·2k ln(k)/k (where ok(1) denotes

a term that converges to 0 as k → ∞) and so Theorem 3.1 shows that a phase-

transition exists until near r = 2k ln(k)/k for sufficiently large k.

For small k ≥ 3, the region r < 1 characterized by Theorem 3.1 is only a small

portion of the region where the subset of k-clauses remains satisfiable. Moreover, the

location of the phase-transition φk(r) given by Theorem 3.1 is difficult to compute

directly. Theorem 3.2 gives explicit lower and upper bounds on the location of a

phase-transition region.

Theorem 3.2. Let k ≥ 3. There is a function Λb(k, r) (defined in Lemma 3.5) such

that for all p ∈ (0, 1/2], s ≥ 0 and r ≥ 0:

(a). If s < 1
2

log2(Λb(k, r)) and r < 2k ln(2) − 1
2
((k + 1) ln(2) + 3), then w.h.p.

ψpk(n, rn, sn) is satisfiable.

(b). If s > r log2(1− 2−k) + 1, then w.h.p. ψpk(n, rn, sn) is unsatisfiable.

Proof. Part (a) follows directly from Lemma 3.10. Part (b) follows directly from

Lemma 3.15. The proofs of these lemmas are presented in Sections 3.3.1 and 3.3.2

respectively.
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Figure 3.7 : Satisfiability of ψpk(n, rn, sn) as n→∞

Both the upper bound r log2(1 − 2−k) + 1 and (using the expression for Λb(k, r)

in Lemma 3.5) the lower bound 1
2

log2(Λb(k, r)) are linear in r. When the k-clause

density r is 0, Theorem 3.2 agrees with Theorem 3.1. As the k-clause density increases

past Θ(2k), Theorem 3.2 no longer gives a lower bound on the location of a possible

phase-transition.

3.3.1 A Proof of the Lower Bound

We now establish Theorem 3.1.(a) and Theorem 3.2.(a), which follow directly from

Lemma 3.9 and Lemma 3.10 respectively.

The key idea in the proof of these lemmas is to decompose ψpk(n, rn, sn) into inde-

pendently generated k-CNF and XOR formulas, so that ψpk(n, rn, sn) = Fk(n, rn) ∧

Qp(n, sn). We can then bound the number of solutions to Fk(n, rn) from below

with high probability and bound from below the probability that Fk(n, rn) remains

satisfiable after including XOR-clauses on top of Fk(n, rn).
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The following three lemmas achieve the first of the two tasks. The first, Lemma

3.3, gives a tight bound on #Fk(n, rn) for small k-clause densities.

Lemma 3.3. Let k ≥ 2 and let αk be the supremum of

{r : ∃δ > 0 s.t. Pr [Fk(n, rn) is unsat.] ≤ O(1/(log n)1+δ)}.

Then αk ≥ 1. Furthermore, there exists a countable set of real numbers Ck such that

for all r ∈ [0, αk)\Ck:

(a). The sequence 1
n
E [log2(#Fk(n, rn)) | Fk(n, rn) is sat.] converges to a limit as

n→∞. Let φk(r) be this limit.

(b). For all ε > 0, w.h.p. (2φk(r)−ε)n ≤ #Fk(n, rn).

(c). For all ε > 0, w.h.p. (2φk(r)+ε)n ≥ #Fk(n, rn).

Proof. These proofs are given in [48]. αk ≥ 1 is given as Remark 2. Part (a) is given

as Theorem 3. Parts (b) and (c) are given as Theorem 1.

We abuse notation to let φk(r) denote the limit of the sequence in Lemma 3.3.(a)

for all r > 0, although a priori this sequence may not converge for r ≥ αk. Later

work refined the value of αk in Lemma 3.3 for sufficiently large k and so extended the

tight bound on #Fk(n, rn). In particular, Lemma 3.4 implies that αk ≥ (1− ok(1)) ·

2k ln(k)/k.

Lemma 3.4. Let k ≥ 2. For all r ≥ 0, if r ≤ (1 − ok(1)) · 2k ln(k)/k then

Pr [Fk(n, rn) is sat.] ≥ 1−O(1/n).

Proof. The proof of this is given as Theorem 1.3 of [49].

It is difficult to compute φk(r) directly. Instead, Lemma 3.5 provides a weaker

but explicit lower bound on #Fk(n, rn).



23

Lemma 3.5. Let k ≥ 3, ε > 0, and r ≥ 0. Let βk be the smallest positive solution to

βk(2− βk)k−1 = 1 and define Λb(k, r) = 4(((1− βk/2)k − 2−k)2/(1− βk)k)r.

If r < 2k ln(2)− 1
2
((k + 1) ln(2) + 3), then w.h.p. 1

2
(Λb(k, r)− ε)n/2 ≤ #Fk(n, rn).

Proof. The proof of this is given on page 264 of [33] within Section 6 (Proof of

Theorem 6); the definition of Λb(k, r) is given as equation (20).

The following two lemmas bound from below the probability that a formula H (in

Lemma 3.8 we take H = Fk(n, rn)) remains satisfiable after including XOR-clauses

on top of H. We first state this bound using notation from [12].

Lemma 3.6. Let ε ∈ (0, 1
2
), c ≥ 0, α′ ∈ (0, 1), f ∈ ( logm

m
(3.6 − 5

4
log2(α

′)), 1/2],

m = α′n, and let H be a formula defined over {X1, · · · , Xn}. If #H = 2m+c and

ε < 2c−1
2(2c+1)

, then Pr
[
H ∧Qf (n,m) is satisfiable

]
≥ 1

2
+ ε.

Proof. The proof of this is given in [12] within Proof of Theorem 2 (part 2).

The following lemma restates Lemma 3.6 using more convenient notation. A

similar result (and proof through Chebyshev’s inequality) when p = 1
2

appears in [9].

Lemma 3.7. Let p ∈ (0, 1/2], and s ≥ 0. Then there exists some integer Ns,p > 0

s.t. for all α ≥ 1, n ≥ Ns,p and all formulas H defined over {X1, · · · , Xn}, we have

Pr
[
H ∧Qp(n, sn) is satisfiable | #H ≥ 2dsne+α

]
≥ 1

2
+

2α − 1

2(2α + 1)
.

Proof. If s = 0, take Ns,p = 1 and notice that H ∧ Qp(n, 0) = H for all formulas H.

The statement follows easily. If s ≥ 1, notice that 2dsne+α ≥ 2n and #H ≤ 2n and so

the statement is vacuously true. Otherwise, s ∈ (0, 1). In this case, lim
n→∞

log(sn)
sn

(3.6−
5
4

log2(s)) = 0 and so there exists some Ns,p > 0 such that p > log(sn)
sn

(3.6− 5
4

log2(s))

for all n ≥ Ns,p.
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Now, let H be an arbitrary boolean formula defined over {X1, · · · , Xn} such that

#H ≥ 2dsne+α. Let c = log2(#H)−sn so that c ≥ α and #H = 2sn+c. Consider an ar-

bitrary β > 0. It follows from Lemma 3.6 (with ε = 2c−1−β
2(2c+1)

, α′ = s, f = p, and c andH

as defined above) that Pr [H ∧Qp(n, sn) is satisfiable] ≥ 1
2

+ 2c−1−β
2(2c+1)

. Since c ≥ α and

2x−1−β
2(2x+1)

is an increasing function of x, it follows that Pr [H ∧Qp(n, sn) is satisfiable] ≥
1
2

+ 2α−1−β
2(2α+1)

. Finally, we take the limit of this inequality as β → 0 to get that

Pr [H ∧Qp(n, sn) is satisfiable] ≥ 1
2

+ 2α−1
2(2α+1)

as desired.

Using the key behavior of XOR-clauses described in Lemma 3.7, we can transform

lower bounds (w.h.p.) on the number of solutions to Fk(n, rn) into lower bounds on

the location of a possible k-CNF-XOR phase-transition.

Lemma 3.8. Let k ≥ 2, p ∈ (0, 1/2], s ≥ 0, and r ≥ 0. Let B1, B2, · · · be an infinite

convergent sequence of positive real numbers such that Bn
i ≤ #Fk(n, rn) occurs w.h.p.

for all i ≥ 1. If s < log2(limi→∞Bi), then w.h.p. ψpk(n, rn, sn) is satisfiable.

Proof. For all integers n ≥ 0, let the event En denote the event when ψpk(n, rn, sn) is

satisfiable. We would like to show that Pr [En] converges to 1 as n→∞.

The general idea of the proof follows. We first decompose ψpk(n, rn, sn) into

ψpk(n, rn, sn) = Fk(n, rn) ∧ Qp(n, sn). Let the event Ln denote the event when the

number of solutions of Fk(n, rn) is bounded from below (by a lower bound to be

specified later). We show that Ln occurs w.h.p.. Next, we use Lemma 3.7 to bound

from below the probability that Fk(n, rn) ∧ Qp(n, sn) remains satisfiable given that

Fk(n, rn) has enough solutions; we use this to show that Pr [En | Ln] converges to 1

as n→∞. Finally, we combine these results to prove that Pr [En] converges to 1.

Since 2s < limi→∞Bi, there is some integer i ≥ 1 such that 2s < Bi. Define the

event Ln as the event when #Fk(n, rn) ≥ Bn
i . Then Ln occurs w.h.p. by hypothesis.



25

Next, we show that Pr [En | Ln] converges to 1. Choose δ > 0 and N > Ns,p (with

Ns,p from Lemma 3.7) such that 2s+δ+1/N < Bi; we can always find sufficiently small

δ and sufficiently large N such that this holds. Since we are concerned only with

the behavior of Pr [En | Ln] in the limit, we can restrict our attention only to large

enough n. In particular, consider n > 2N . Then we get that 2sn+δn+2 < Bn
i and so

2dsne+δn+1 < Bn
i . Let α = δn + 1, so that 2dsne+α ≤ Bn

i . Then Lemma 3.7 says that

Pr [En | Ln] ≥ 1
2

+ 2δn+1−1
2(2δn+1+1)

. Since 2x−1
2(2x+1)

converges to 1
2

as x → ∞, we have that

1
2

+ 2δn+1−2
2(2δn+1+1)

converges to 1 as n→∞. Thus Pr [En | Ln] must also converge to 1.

Thus both Pr [En | Ln] and Pr [Ln] converge to 1 as n→∞. Since Pr [En ∩ Ln] =

Pr [En | Ln] · Pr [Ln], this implies that Pr [En ∩ Ln] also converges to 1. Finally, since

Pr [En ∩ Ln] ≤ Pr [En] ≤ 1, this implies that Pr [En] converges to 1.

Finally, it remains only to use Lemma 3.8 to obtain bounds on the k-CNF-XOR

phase-transition. The tight lower bound on #Fk(n, rn) from Lemma 3.3.(b) corre-

sponds to a tight lower bound on the location of the phase-transition.

Lemma 3.9. Let k ≥ 2, and let αk, Ck, and φk(r) be as defined in Lemma 3.3. For

all p ∈ (0, 1/2], r ∈ [0, αk)\Ck and s ∈ [0, φk(r)), ψpk(n, rn, sn) is satisfiable w.h.p..

Proof. Let Bi = 2φk(r)−1/i. By Lemma 3.3.(b), Bn
i ≤ #Fk(n, rn) w.h.p. for all i ≥ 1.

Furthermore, limi→∞Bi = 2φk(r) and so s < log2(limi→∞Bi). Thus ψpk(n, rn, sn) is

satisfiable w.h.p. by Lemma 3.8.

The weaker lower bound on #Fk(n, rn) from Lemma 3.5 corresponds to a weaker

lower bound on the location of the phase-transition.

Lemma 3.10. Let k ≥ 3, p ∈ (0, 1/2], s ≥ 0, and r ≥ 0. If r < 2k ln(2) − 1
2
(k +

1) ln(2) + 3
2

and s < 1
2

log2(Λb(k, r)), then ψpk(n, rn, sn) is satisfiable w.h.p..
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Proof. Let Bi = (Λb(k, r) − 1/i)1/2. This is an increasing sequence in i and so

log2(Bi+1/Bi) is positive for all i ≥ 1. Consider one such i ≥ 1 and define Ni =

1/ log2(Bi+1/Bi). Then for all n > Ni it follows that 21/n < Bi+1/Bi and so

Bn
i <

1
2
Bn
i+1. By Lemma 3.5, 1

2
Bn
i+1 ≤ #Fk(n, rn) w.h.p. and therefore Bn

i <
1
2
Bn
i+1 ≤

#Fk(n, rn) w.h.p. as well.

Furthermore, limi→∞Bi = Λb(k, r)
1/2 and so s < log2(limi→∞Bi). It follows that

ψpk(n, rn, sn) is satisfiable w.h.p. by Lemma 3.8.

3.3.2 A Proof of the Upper Bound

We now establish Theorem 3.1.(b) and Theorem 3.2.(b), which follow directly from

Lemma 3.14 and Lemma 3.15 respectively.

Similar to Section 3.3.1, the key idea in the proof of these lemmas is to decom-

pose ψpk(n, rn, sn) into independently generated k-CNF and XOR formulas, so that

ψpk(n, rn, sn) = Fk(n, rn) ∧ Qp(n, sn). We can then bound the number of solutions

to Fk(n, rn) from above with high probability and bound from below the probability

that Fk(n, rn) becomes unsatisfiable after including XOR-clauses on top of Fk(n, rn).

The first of these two tasks is accomplished through Lemma 3.3.(c), which gives

a tight upper bound on #Fk(n, rn) for small k-clause densities, and by Lemma 3.11,

which gives a weaker explicit upper bound on #Fk(n, rn).

Lemma 3.11. For all ε > 1, k ≥ 2, and r ≥ 0, w.h.p. #Fk(n, rn) < (2ε ·(1−2−k)r)n.

Proof. Let X = #Fk(n, rn). For a random assignment on n variables σ, note that

Pr [σ satisfies Fk(n, 1)] = (1−2−k). Since the drne k-clauses of Fk(n, rn) were chosen

independently, this implies that E [X] = 2n(1− 2−k)drne.

By Markov’s inequality, we get Pr [X ≥ εnE [X]] ≤ E [X] /(εnE [X]) = ε−n. Since

1 − 2−k < 1 and so εnE [X] = 2nεn(1 − 2−k)drne ≤ 2nεn(1 − 2−k)rn, it follows that
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Pr
[
X ≥ εn2n(1− 2−k)rn

]
≤ Pr [X ≥ εnE [X]] ≤ ε−n. Since ε > 1, this implies that

lim
n→∞

Pr
[
X < εn2n(1− 2−k)rn

]
= 1 as desired.

The following lemma bounds from below the probability that a formula H (in

Lemma 3.13 we take H = Fk(n, rn)) becomes unsatisfiable after including XOR-

clauses on top of H. This result and proof is similar to Corollary 1 from [9].

Lemma 3.12. Let α ≥ 1, p ∈ (0, 1/2], s ≥ 0, n ≥ 0, and let H be a formula defined

over X = {X1, · · · , Xn}. Then Pr
[
H ∧Qp(n, sn) is unsatisfiable | #H ≤ 2dsne−α

]
≥

1− 2−α.

Proof. Let R be the set of all truth assignments to the variables in X that satisfy

H; there are #H such truth assignments. For every truth assignment σ ∈ R, let

Yσ be a 0-1 random variable that is 1 if σ satisfies H ∧ Qp(n, sn) and 0 otherwise.

Note that Pr [σ satisfies Qp(n, 1)] = 1/2 (since for all possible sets of variables A ⊆

X, Pr [σ satisfies Qp(n, 1) | the variables of Qp(n, 1) are exactly A] = 1/2). Since the

dsne XOR-clauses of Qp(n, sn) were chosen independently, this implies that E [Yσ] =

Pr [σ satisfies Qp(n, sn)] = 2−dsne.

Let the random variable Y be the number of solutions to H ∧Qp(n, sn), so Y =

#(H ∧Qp(n, sn)) =
∑

σ Yσ. Thus E [Y ] =
∑

σ E [Yσ] = #H · 2−dsne.

Markov’s inequality implies that Pr [Y ≥ 1] ≤ E [Y ], so Pr [Y ≥ 1] ≤ #H · 2−dsne.

If #H ≤ 2dsne−α, then #H · 2−dsne ≤ 2−α. Thus Pr
[
Y ≥ 1 | #H ≤ 2dsne−α

]
≤

2−α. Since H ∧ Qp(n, sn) is unsatisfiable exactly when Y = 0, we conclude that

Pr [H ∧Qp(n, sn) is unsatisfiable] ≥ 1− 2−α.

Using the key behavior of XOR-clauses described in Lemma 3.12, we can transform

upper bounds (w.h.p.) on the number of solutions to Fk(n, rn) into upper bounds on

the location of a possible k-CNF-XOR phase-transition.
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Lemma 3.13. Let k ≥ 2, p ∈ (0, 1/2], s ≥ 0, and r ≥ 0. Let B1, B2, · · · be an infinite

convergent sequence of positive real numbers such that #Fk(n, rn) ≤ Bn
i occurs w.h.p.

for all i ≥ 1. If s > log2(limi→∞Bi), then w.h.p. ψpk(n, rn, sn) is unsatisfiable.

Proof. For all integers n ≥ 0, let the event ¬En denote the event when ψpk(n, rn, sn)

is unsatisfiable. We would like to show that Pr [¬En] converges to 1 as n→∞.

The general idea of the proof follows. Note that ψpk(n, rn, sn) = Fk(n, rn) ∧

Qp(n, sn) as in Lemma 3.8. Let the event Un denote the event when the number

of solutions of Fk(n, rn) is bounded from above (by an upper bound to be specified

later). We show that Un occurs w.h.p.. Next, we use Lemma 3.12 to bound from below

the probability that Fk(n, rn) ∧Qp(n, sn) becomes unsatisfiable given that Fk(n, rn)

has few solutions; we use this to show that Pr [¬En | Un] converges to 1 as n → ∞.

Finally, we combine these results to prove that Pr [¬En] converges to 1.

Since 2s > limi→∞Bi, there is some integer i ≥ 1 such that 2s > Bi. Define the

event Un as the event when #Fk(n, rn) ≤ Bn
i . Then Un occurs w.h.p. by hypothesis.

Next, we show that Pr [¬En | Un] converges to 1. Choose δ > 0 and N > 0 such

that 2s−δ−1/N > Bi. As in Lemma 3.8 we are concerned only with the behavior of

Pr [¬En | Un] in the limit so we can restrict our attention only to large enough n. In

particular, consider n > N . Then we get that 2dsne−δn−1 > 2sn−δn−n/N > Bn
i . Let α =

δn+1, so that 2dsne−α ≥ Bn
i . Then Lemma 3.12 says that Pr [¬En | Un] ≥ 1−2−δn−1.

Since 1− 2−δn−1 converges to 1 as n→∞, Pr [¬En | Un] must also converge to 1.

Therefore both Pr [¬En | Un] and Pr [Un] converge to 1 as n → ∞. This implies

that Pr [¬En ∩ Un] = Pr [¬En | Un]·Pr [Un] also converges to 1. Since Pr [¬En ∩ Un] ≤

Pr [¬En] ≤ 1, this implies that Pr [¬En] converges to 1 as desired.

Finally, it remains only to use Lemma 3.13 to obtain bounds on the k-CNF-
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XOR phase-transition. The tight upper bound on #Fk(n, rn) from Lemma 3.3.(c)

corresponds to a tight upper bound on the location of the phase-transition.

Lemma 3.14. Let k ≥ 2, and let αk, Ck, and φk(r) be as defined in Lemma 3.3.

Then for all p ∈ (0, 1/2], r ∈ [0, αk)\Ck and s > φk(r), ψpk(n, rn, sn) is unsatisfiable

w.h.p..

Proof. Let Bi = 2φk(r)+1/i. By Lemma 3.3.(c), Bn
i ≥ #Fk(n, rn) w.h.p. for all i ≥ 1.

Furthermore, limi→∞Bi = 2φk(r) and so s > log2(limi→∞Bi). Thus ψpk(n, rn, sn) is

unsatisfiable w.h.p. by Lemma 3.13.

The weaker upper bound on #Fk(n, rn) from Lemma 3.11 corresponds to a weaker

upper bound on the phase-transition.

Lemma 3.15. Let k ≥ 2, p ∈ (0, 1/2], s ≥ 0, and r ≥ 0. If s > 1 + r log2(1− 2−k),

then ψpk(n, rn, sn) is unsatisfiable w.h.p..

Proof. Let Bi = ((1+1/i) ·2(1−2−k)r). By Lemma 3.11, Bn
i ≥ #Fk(n, rn) w.h.p. for

all i ≥ 1. Furthermore, limi→∞Bi = 2(1 − 2−k)r and so s > log2(limi→∞Bi). Thus

ψpk(n, rn, sn) is unsatisfiable w.h.p. by Lemma 3.13.

3.4 Extending the Phase-Transition Region

Section 3.3 proved that a phase-transition exists for k-CNF-XOR formulas when the

k-clause density is small. Our empirical observations in Section 3.2 suggest that

a phase-transition exists for higher k-clause densities as well. In this section, we

conjecture two possible extensions to our theoretical results.

The first extension follows from Theorem 3.1, which implies that s = φk(r) gives

the location of the phase-transition for small k-clause densities. It is thus natural to
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conjecture that φk(r) gives the location of the k-CNF-XOR phase-transition for all

(except perhaps countably many) r > 0. This would follow from a conjecture of [48].

The second extension follows from the experimental results in Section 3.2, which

suggest that the location of the phase-transition follows a linear trade-off between

k-clauses and XOR-clauses. This leads to the following conjecture:

Conjecture 2 (k-CNF-XOR Linear Phase-Transition Conjecture). Let k ≥ 2. Then

there exists a slope Lk < 0 and a constant α∗k > 0 such that for all p ∈ (0, 1/2],

r ∈ [0, α∗k), and s ≥ 0:

(a). If s < rLk + 1, then w.h.p. ψpk(n, rn, sn) is satisfiable.

(b). If s > rLk + 1, then w.h.p. ψpk(n, rn, sn) is unsatisfiable.

Theorem 3.2 bounds the possible values for Lk. Moreover, if the Linear k-CNF-

XOR Phase-Transition Conjecture holds, then Theorem 3.1 implies that φk(r) is

linear for all r < αk and r < α∗k. Explicit computations of φk(r) (or sufficiently tight

bounds) would resolve this conjecture.

Note that this conjecture does not necessarily describe the entire k-CNF-XOR

phase-transition; a phase-transition may exist when r > α∗k as well. The experimental

results in Section 3.2 for k = 2 and k = 3 suggest that the location of the phase-

transition may “kink” and become non-linear for large enough k-clause densities. We

leave the full characterization of the k-CNF-XOR phase-transition for future work,

noting that a full characterization would resolve the Satisfiability Phase-Transition

Conjecture.
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Chapter 4

Runtime Scaling Behavior

In this chapter, we explicitly study the runtime of CryptoMiniSAT, a specialized CNF-

XOR solver, on random k-CNF-XOR formulas.

As introduced in Chapter 1, the runtime of SAT solvers (using DPLL and related

algorithms) on random fixed-width CNF formulas (where each clause contains a fixed

number of literals) was shown to follow an easy-hard-easy pattern [25]: the runtime

is low when the clause density is very low or very high and peaks near the phase-

transition point. Further analysis of the relationship between the clause density

and SAT solver runtime revealed a more nuanced picture of the scaling behavior of

SAT solvers on random k-CNF instances: a secondary phase-transition was observed

within the satisfiable region, where the median runtime transitions from polynomial

to exponential in the number of variables [30].

Theoretical analysis of this phenomenon [31–33] has shown that the solution space

of a random fixed-width CNF formula undergoes a dramatic ‘shattering’. When

the clause density is small, almost all solutions are contained in a single connected-

component (where solutions are adjacent if their Hamming distance is 1). Above a

specific clause density the solution space ‘shatters’ into exponentially many connected-

components. Moreover, these clusters are with high probability all linearly separated

i.e. the Hamming distance between all pairs of connected-components is bounded

from below by some function linear in the number of variables. This ‘shattering’

of the solution space into linearly separated solutions is known to be difficult for a
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variety of SAT-solving algorithms [34,35].

In Chapter 3, we identified the phase-transition location for random k-CNF-XOR

formulas. The next step towards explaining the runtime behavior of CNF-XOR solvers

in practice (and thus explaining the runtime behavior of hashing-based algorithms),

then, is the analysis of the scaling behavior of CNF-XOR solvers on random k-CNF-

XOR formulas.

For example, it is widely believed that the performance of CNF-XOR solvers on

CNF-XOR formulas depends on the width of the XOR-clauses. Consequently, recent

efforts [50,51] have focused on designing hashing-based techniques that employ XOR-

clauses of smaller width. In this chapter, we use our framework of random k-CNF-

XOR formulas to present empirical evidence that using smaller width XOR-clauses

does not necessarily improve the scaling behavior of CNF-XOR solvers.

In the remainder of this chapter, we present the first study of the runtime behavior

of CNF-XOR solvers on random k-CNF-XOR formulas and on the solution space of

random k-CNF-XOR formulas. In particular:

(a). We present (in Section 4.2) experimental evidence that the runtime of the CNF-

XOR solver CryptoMiniSAT scales exponentially in the number of variables at

many k-clause and XOR-clause densities well within the satisfiable region, even

when both the CNF and XOR subformulas are separately solvable in polynomial

time by CryptoMiniSAT.

(b). We present (in Section 4.3) experimental evidence that this exponential scaling

peaks around the empirical phase-transition location for random k-CNF-XOR

formulas, and further that the scaling behavior does not monotonically improve

as the XOR-clauses get shorter.
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(c). We hypothesize (in Section 4.4) that this exponential scaling behavior within

the satisfiable region is caused by the shattering of the solution space of random

k-CNF-XOR formulas. We use recent theoretical results from the field of con-

strained counting [12] to prove that the solution space of random variable-width

XOR formulas (and therefore of random k-CNF-XOR formulas) shatters.

4.1 Experimental Setup

We used the experimental setup described in Section 2.5 to explore empirically the

runtime behavior of CryptoMiniSAT on random k-CNF-XOR formulas. In particu-

lar, the objective of the experimental setup was to empirically determine the scal-

ing behavior, as a function of n, in the median runtime of checking satisfiability of

ψpk(n, rn, sn) with respect to r (the k-clause density), s (the XOR-clause density),

and p (the XOR variable-probability) for fixed k.

In all experiments we fix the clause length k = 3. The 3-clause density r, the XOR-

clause density s, and the XOR variable-probability p varied in each experiment, as

follows:

• To study the effect of the 3-clause and XOR-clause densities on the runtime,

we ran 124 experiments with r ∈ {1, 2, 3, 4}, p = 1/2, and s ranging from 0.3 to

0.9 in increments of 0.02. We present selected results from these experiments

in Section 4.2.

• To study the effect of the XOR variable-probability on the runtime, we ran 679

experiments with r = 2, p ranging from 0.02 to 0.5 in increments of 0.005, and

s ranging from 0.3 to 0.9 in increments of 0.1. We chose these clause-densities

so that approximately half of the clause-densities were in the satisfiable region.
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We present selected results from these experiments in Section 4.3.

To determine the scaling behavior of CryptoMiniSAT on random k-CNF-XOR for-

mulas with parameters k, r, s, and p, we determined a number of variables N so

that the median runtime of CryptoMiniSAT on ψpk(N, rN, sN) was as large as possible

while remaining below the set formula timeout. We then allowed n to range from 10

to N in increments of 1, and estimated the median solve time of CryptoMiniSAT on

ψpk(n, rn, sn) using the experimental setup described in Section 2.5. Finally, we used

the curve fit function in the Python scipy.optimize∗ library to determine the relation-

ship between the number of variables n and the medium runtime of CryptoMiniSAT on

ψpk(n, rn, sn). We attempted to fit linear (an + b), quadratic (an2 + bn + c), cubic

(an3 + bn2 + cn+ d), and exponential (β2αn) curves; the best-fit curve was the curve

with the smallest mean squared error.

All formula were given a timeout of 5 seconds. We were not able to run informative

experiments for formulas with higher timeouts; as the runtime of CryptoMiniSAT in-

creases past 5 seconds, the variance in runtime significantly increases as well and so

experiments require a number of trials at each data point far beyond our computa-

tional abilities.

4.2 Experimental Results on XOR-clause density

We analyzed the median runtime of CryptoMiniSAT on ψ
1/2
3 (n, rn, sn) for a fixed r

and s as a function of the number of variables n. We present here results only for the

experiments with r ∈ {2, 3} †.

∗https://www.scipy.org/

†The data from all experiments is available at http://www.cs.rice.edu/CS/Verification/

Projects/CUSP/
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Figure 4.1 : Runtime for 3-CNF-XOR formulas at 3-clause density r = 2, XOR-

clause density s = 0.3, and XOR variable-probability p = 1/2, together with the

best-fit curve 0.00370 · 20.0305n.
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Figure 4.2 : Exponential scaling factor for 3-CNF-XOR formulas with 3-clause density

r = 2 and 3 and XOR variable-probability p = 1/2. The scaling factor α is the

exponent of the best-fit line for the runtime of ψ
1/2
3 (n, rn, sn).
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Figure 4.1 plots the median runtime at k = 3, r = 2, and s = 0.3 as a function of

n, together with the best-fit curve. The x-axis indicates the number of variables n.

The y-axis indicates the median runtime of CryptoMiniSAT on ψ
1/2
3 (n, 2n, 0.3n). We

observe that the median runtime increases exponentially in the number of variables.

In this case, the best-fit curve is the exponential function 0.0370 · 20.0305n.

In fact, for all experiments with r = 2, 3 and 0.3 ≤ s ≤ 0.9 the best-fit curve to

the median runtime as a function of n is proportional to an exponential function of

the form 2αn for some α > 0. Figure 4.2 plots the scaling behavior with respect to n

of the median runtime of CryptoMiniSAT on both ψ
1/2
3 (n, 2n, sn) and ψ

1/2
3 (n, 3n, sn).

The x-axis indicates the density of XOR-clauses s. The legend indicates the density

of 3-clauses r. The value α, known as the scaling factor, shown on the y-axis indicates

that the best-fit curve to the median runtime of ψp3(n, rn, sn) as a function of n was

proportional to 2αn. We observe that the scaling factor is closely related to the 3-

clause density and the XOR-clause density: when the XOR-clause density is low or

high the scaling factor is low, and the scaling factor peaks at some intermediate value.

When r = 2, we observe that this peak in the scaling factor occurs when s ∈ (0.6, 0.7).

When r = 3, we observe that this peak in the scaling factor is near s = 0.4. As seen

in Chapter 3, there is a phase-transition in the satisfiability of random 3-CNF-XOR

formulas near r = 2, s = 0.65 and near r = 3, s = 0.4. Thus we observe a peak in the

runtime scaling factor around the 3-CNF-XOR phase-transition, similar to the peak

observed in the runtime factor for Fk(n, rn) around the k-CNF phase-transition [30].

Our experimental results do not describe extremely low 3-clause densities and

XOR-clause densities (for example, when the XOR-clause density is below 0.3). At

such low densities, conclusive evidence of polynomial or exponential behavior requires

computational power beyond our capabilities.
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Figure 4.3 : Exponential scaling factor for 3-CNF-XOR formulas with 3-clause density

r = 2 and XOR-clause density s = 0.4, 0.5, and 0.7.

4.3 Experimental Results on XOR-clause width

We next analyzed the median runtime of CryptoMiniSAT on ψp3(n, 2n, sn) for a fixed

p and s as a function of the number of variables n. We present here results only for

the experiments with s ∈ {0.4, 0.5, 0.7} ‡.

Figure 4.3 plots the scaling behavior with respect to n of the medium runtime of

CryptoMiniSAT on ψp3(n, 2n, sn). The x-axis indicates the XOR variable-probability p.

The legend indicates the density of XOR-clauses s. The value α shown on the y-axis

indicates that the best-fit curve to the median runtime of ψp3(n, 2n, sn) as a function

of n was proportional to 2αn. In all cases, we observe that the behavior of the scaling

factor is independent of the XOR variable-probability, p, when p ∈ (0.15, 0.5). As

the XOR variable-probability decreases further, the scaling factor increases to a peak

when p ∈ (0.05, 0.1), then decreases.

‡The data from all experiments is available at http://www.cs.rice.edu/CS/Verification/

Projects/CUSP/
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In summary, we observe that the runtime of CryptoMiniSAT scales exponentially

in the number of variables on random 3-CNF-XOR formulas across a wide range of

densities and XOR variable-probabilities. The exponential scaling behavior peaks

near the empirical location of the 3-CNF-XOR phase-transition. The exponential

scaling behavior is constant when the XOR variable-probability is above p = 0.15

and the scaling behavior peaks when the XOR variable-probability is between 0.05

and 0.1, independent of the XOR-clause density.

4.4 The Separation of the XOR Formula Solution Space

In the case of k-CNF formulas, the exponential runtime scaling of DPLL-solvers (in

the satisfiable region) is closely connected to the ‘shattering’ of the solution space into

exponentially many Ω(n)-separated clusters w.h.p. [34,35]. Prior work has shown that

the solution space of fixed-width XOR-clauses has similar behavior. Unfortunately,

the proof techniques used for fixed-width XOR-clauses do not easily extend to the

solution space of Qp(n, sn). In particular, the proof techniques for XOR-clauses of

fixed-width ` heavily involve properties of either random `-uniform hypergraphs [36] or

random factor graphs with factors of constant degree ` [43]. If the width of each XOR-

clause is stochastic, as in Qp(n, sn), rather than fixed, the corresponding hypergraphs

are no longer uniform and the corresponding factor graphs no longer have factors of

constant degree.

Nevertheless, we show in Theorem 4.1 that all solutions of a random XOR-formula

are w.h.p. Ω(n)-separated (as long as the variable-probability decreases slowly enough

as a function of n). This is a stronger separation than the separation seen in the case

of k-CNF formulas and fixed-width XOR-formulas, where there may be clusters of

nearby solutions.
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Theorem 4.1 (XOR Shattering Theorem). Let s ∈ (0, 1), ρ > 2, and f(n) be a non-

negative function. If ρ log(sn)
sn
≤ f(n) ≤ 1/2 for all large enough n, then Qf(n)(n, sn)

is w.h.p. Ω(n)-separated.

Proof. This follows directly from Lemma 4.6. The proof of this lemma appears in

Section 4.4.1.

Notice that Theorem 4.1 allows the XOR variable-probability to depend on the

number of variables. In particular, the XOR variable-probability can decrease as a

function of n. Theorem 4.1 does not characterize the solution space of XOR-formulas

when the variable-probability decreases faster than 2 log(sn)
sn

as a function of n. It is

possible that the solution space is still Ω(n)-separated in this case, or that clusters of

solutions can be found. We leave this for future work.

In Section 4.2 and Section 4.3, we focused on an XOR variable-probability model

that is independent of n; this XOR variable-probability is an important special case

of the above general theorem. In particular, if the XOR variable-probability is some

constant p ∈ (0, 1/2] then the solution space of a random XOR-formula with variable-

probability p is Ω(n)-separated. We highlight this fact as Corollary 4.2.

Corollary 4.2. For all s ∈ (0, 1) and p ∈ (0, 1/2], Qp(n, sn) is w.h.p. Ω(n)-separated.

Proof. This follows from Theorem 4.1 with f(n) = p.

Notice that Corollary 4.2 also implies that ψpk(n, rn, sn) = Fk(n, rn) ∧ Qp(n, sn)

is w.h.p. Ω(n)-separated.

The experimental results presented in Section 4.2 suggest that SAT solvers scale

exponentially in the number of variables on certain densities of random k-CNF-XOR

formulas. Moreover, the experimental results presented in Section 4.2 suggest that
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this exponential scaling occurs at all observed XOR variable-probabilities. Corollary

4.2 implies that the solution space of ψpk(n, rn, sn) is Ω(n)-separated at all XOR-

clause densities and XOR variable-probabilities. Since the separation of the k-CNF

solution space is closely connected to the exponential scaling of DPLL-solvers, we

hypothesize that the exponential scaling of CryptoMiniSAT we observed at many XOR-

clause densities and XOR variable-probabilities is closely connected to the Ω(n)-

separation of k-CNF-XOR formulas at all nonzero XOR-clause densities and XOR

variable-probabilities.

4.4.1 A Proof of the Separation

In this section we establish Theorem 4.1, which follows directly from Lemma 4.6. To

do this, notice that if two solutions of Qp(n, sn) differ exactly on a set of variables A

then every XOR-clause in Qp(n, sn) must contain an even number of variables from

A. We bound from above the probability, for a fixed set of variables A, that a random

XOR-clause chosen with variable-probability p contains an even number of variables

from A. By summing this bound across all sets containing no more than λn variables

for some constant λ, we obtain a bound on the probability that two solutions to

Qp(n, sn) differ in no more than λn variables.

The following lemma presents an elementary result in probability theory. We use

this result in Lemma 4.5 to bound the probability that a random XOR-clause chosen

with variable-probability p has an even number of variables from a set A.

Lemma 4.3. Let N be a positive integer and let p be a real number with 0 ≤ p ≤ 1.

If B1, B2, · · · , BN are independent Bernoulli random variables with parameter p, then

Pr
[∑

1≤i≤nBi is even
]

= 1
2

+ 1
2
(1− 2p)N .

Proof. Fix p ∈ [0, 1]. For all N ≥ 0, let aN be the probability that the sum of n
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independent Bernoulli random variables with parameter p is even. Then a0 = 1 and

aN = (1− p)aN−1 + p(1− aN−1) = p + aN−1 − 2paN−1 for all N ≥ 1. It follows that

aN = 1
2

+ 1
2
(1− 2p)N .

We will ultimately require that the sum of these probabilities across many sets of

variables A is sufficiently small. In particular, the following lemma shows that the

sum of these probabilities across all sets whose size is smaller than λn goes to 0 in the

limit as n→∞ when the XOR variable-probability is proportional to log(sn)/(sn).

Lemma 4.4. Let α, δ ∈ (0, 1), m = αn, κ > − log(2/(1+δ)−1)
log(1+δ)

and λ∗ < 1/2 such that

−λ∗ log(λ∗)− (1− λ∗) log(1− λ∗) = α log(1 + δ). Then for all λ < λ∗:

lim
n→∞

λn∑

w=1

(
n

w

)(
1

2
+

1

2

(
1− 2κ

logm

m

)w)m
= 0

Proof. The proof of this is given as Lemma 7 of [12].

The following lemma allows us to show that the XOR solution-space is g(n)-

separated if the XOR variable-probability is f(n) for some functions f and g provided

that the sum of probability of all sets of variables whose size is below g(n) goes to

0. In particular, in Lemma 4.6 we use this lemma with f(n) ∝ log(sn)/(sn) and

g(n) ∈ Ω(n) to show that the solution-space of Qf(n)(n, sn) is Ω(n)-separated.

Lemma 4.5. Let f(n) and g(n) be nonnegative functions with f(n) ≤ 1/2 for all

sufficiently large n. If

lim
n→∞

g(n)∑

w=1

(
n

w

)(
1

2
+

1

2
(1− 2f(n))w

)sn
= 0

then w.h.p. all solutions of Qf(n)(n, sn) are g(n)-separated.
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Proof. Let the random variable D be 1 if Qf(n)(n, sn) has two solutions with a Ham-

ming distance less than or equal to g(n) and 0 otherwise. We would like to prove that

limn→∞ Pr [D = 1] = 0.

For all nonempty subsets of variables A ⊆ X, let the random variable D(A)

be 1 if Qp(n, sn) has a pair of solutions that differ exactly on the variables of A

and 0 otherwise. Then D(A) = 1 if and only if each XOR-clause in Q contains

an even number of variables from A. Moreover, let B be the set of all subsets of

variables A ⊆ X s.t. 0 < |A| ≤ g(n) and notice that D ≤ ∑
A∈BD(A). Thus

Pr [D = 1] ≤∑A∈B Pr [D(A) = 1].

Fix A ⊆ X and let Q1 be a random XOR-clause chosen with variable-probability

f(n). Enumerate the |A| variables in A as Y1, Y2, · · · , Y|A|. Then for all 1 ≤ i ≤ |A|

we can define a random variable Bi that is 1 if the variable Yi appears in Q1 and is

0 otherwise. Notice that each Bi is an independent Bernoulli random variable with

parameter f(n), and further that the number of variables from A contained in Q1 is

exactly
∑|A|

i=1Bi. By Lemma 4.3 it follows that the probability that Q1 contains an

even number of variables from A is 1
2

+ 1
2
(1− 2f(n))|A|.

Since all dsne XOR-clauses of Qp(n, sn) are chosen independently with variable-

probability f(n), it follows that Pr [D(A)] = (1/2 + (1 − 2f(n))|A|/2)dsne. For all

sufficiently large n, f(n) ≤ 1/2 and so 1/2 + (1− 2f(n))|A|/2 ≤ 1. Thus Pr [D(A)] ≤

(1/2 + (1− 2f(n))|A|/2)sn for all sufficiently large n.

Finally, notice that there are exactly
(
n
w

)
sets in B of size w ≤ g(n) and so

Pr [D = 1] ≤ ∑A∈B(1/2 + (1 − 2f(n))|A|/2)sn =
∑g(n)

w=1

(
n
w

)
(1/2 + (1 − 2f(n))w/2)sn.

By hypothesis, this implies that limn→∞ Pr [D = 1] = 0.

The following lemma combines Lemma 4.4 and Lemma 4.5 to show that a variable-

probability above 2 log(sn)/(sn) implies Ω(n)-separation. This finishes the proof of



43

Theorem 4.1.

Lemma 4.6. Let s and ρ be real numbers such that 0 < s ≤ 1 and ρ > 2. If f(n)

is a nonnegative function such that ρ log(sn)
sn
≤ f(n) ≤ 1/2 for all sufficiently large n,

then Qf(n)(n, sn) is w.h.p. Ω(n)-separated.

Proof. Let a(x) = − log(2/(1 + x) − 1)/ log(1 + x). Notice that limx→0 a(x) = 2,

limx→1 a(x) = ∞, and a(x) is continuous on (0, 1). Since 2 < ρ < ∞, it follows that

there is some δ ∈ (0, 1) with a(δ) < ρ.

Let H(x) = −x log(x) − (1 − x) log(1 − x). Notice that H(0) = 0, H(1/2) = 1,

and H is monotonically increasing on [0, 1/2]. Since 0 < s log(1 + δ) < 1, it follows

that there is some λ∗ ∈ (0, 1/2) with H(λ∗) = s log(1 + δ). Define f̂(n) = ρ log(sn)
sn

and

g(n) = nλ∗/2.

Then by Lemma 4.4 with α = s, κ = ρ, and λ = λ∗/2 (and with δ and λ∗ as

defined above) we have that limn→∞
∑g(n)

w=1

(
n
w

)
(1/2 + (1− 2f̂(n))w/2)sn = 0.

Notice that f̂(n) ≤ f(n) for all sufficiently large n. It follows that 1 − 2f̂(n) ≥

1−2f(n) and so (1−2f̂(n))w ≥ (1−2f(n))w for all w ≥ 1 and for all sufficiently large

n. Therefore
(
n
w

)
(1/2+(1−2f̂(n))w/2)sn ≥

(
n
w

)
(1/2+(1−2f(n))w/2)sn for all w ≥ 1

and for all sufficiently large n. Thus limn→∞
∑g(n)

w=1

(
n
w

)
(1/2 + (1 − 2f(n))w/2)sn = 0

and so by Lemma 4.5 we conclude that Qf(n)(n, sn) is Ω(g(n)) = Ω(nλ∗/2) = Ω(n)-

separated w.h.p. as desired.
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Chapter 5

Conclusion

In this thesis, we presented the first study of random CNF-XOR formulas. In this

chapter, we summarize the main contributions of this thesis, discuss the implications

of this thesis on hashing-based approaches to constrained counting and sampling, and

finally outline directions for future research.

5.1 Summary of Contributions

In the first part of this thesis, we presented the first study of phase-transition phe-

nomenon in the satisfiability of random k-CNF-XOR formulas. We showed in the k-

CNF-XOR Phase-Transition Theorem that the free-entropy density φk(r) of k-CNF

formulas gives the location of the phase-transition for k-CNF-XOR formulas when

the density of the k-CNF clauses is small. We conjectured in the k-CNF-XOR Linear

Phase-Transition Conjecture that this phase-transition is linear.

In the second part of this thesis, we presented the first study of the runtime

behavior of SAT solvers on random k-CNF-XOR formulas. We presented experimental

evidence that CryptoMiniSAT scales exponentially on random k-CNF-XOR formulas

across a wide range of k-clause densities, XOR-clause densities, and XOR variable-

probabilities. To begin to explain this phenomenon in the satisfiable region, we proved

that the solution space of XOR-formulas is linearly separated w.h.p..
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5.2 Implications for Sampling and Counting Algorithms

In Chapter 1, we motivated the study of CNF-XOR formulas through their usage in

recent hashing-based algorithms for constrained sampling and counting. Given the

greater understanding of random CNF-XOR formulas presented in this thesis, in this

section we discuss several new insights into hashing-based algorithms.

The results of this thesis have immediate practical implications for the imple-

mentation of hashing-based algorithms. Recent hashing-based algorithms allow some

freedom in the exact parameters (for example, in the XOR-clause density [52] or the

XOR variable-probability [12]) used to generate CNF-XOR formulas. This thesis sug-

gests combinations of clause-densities and XOR variable-probabilities that are likely

to be difficult for CNF-XOR solvers and thus should be avoided. Applying these re-

sults to develop better heuristics for hashing-based algorithms is an exciting direction

for future work that may lead to significant runtime improvements.

The results of this thesis offer theoretical insights into approximate counting and

sampling as well. In particular, the properties of variable-width XOR-clauses that al-

low these XOR-clauses to produce good approximations when used in hashing-based

algorithms [12] are exactly the properties used in this thesis to show the solution-

space of XOR-formulas ’shatters’. That is, the quality of approximation provided

by hashing-based algorithms appears to be fundamentally linked to the hardness of

such algorithms. Although allowing approximate solutions made the problems of con-

strained counting and sampling easier than computing an exact solution, computing

these approximations are still not easy even with state-of-the-art SAT-solving tech-

niques. Further analysis of this apparent trade-off between approximation quality

and algorithmic hardness may lead to complexity-theoretic insights into the difficulty

of approximate counting and sampling.
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5.3 Other Directions for Future Work

In addition to the implications described above for hashing-based algorithms for sam-

pling and counting, there are many other interesting directions for future research.

We outline several of them below.

Proving the Complete Phase-Transition In Chapter 3, we proved that that a

phase-transition exists for k-CNF-XOR formulas when the k-clause density is small.

In Section 3.4, we conjectured several possible extensions to these theoretical re-

sults, inspired by our empirical observations. In particular, we conjectured in the

k-CNF-XOR Phase Transition Conjecture that this phase-transition is linear. We

leave further analysis and proof of this conjecture for future work.

Additional Constraints for Sampling and Counting Pittel and Sorkin [42]

recently identified the location of the phase-transition for random `-XOR formulas,

where each clause contains exactly ` literals. This suggests that a phase-transition

may also exist in formulas that mix k-CNF clauses together with `-XOR clauses. All

proofs of the upper bound presented in Section 3.3.2 also hold for random `-XOR

formulas; however, the proofs of the lower bound presented in Section 3.3.1 may not

hold for random `-XOR formulas.

Is Shattering Hard for CNF-XOR Solvers? In the k-CNF case, the shattering

of the solution-space into linearly separated components is closely connected to the

exponential scaling of SAT algorithms within the satisfiable region [34]. Our exper-

imental results presented in Chapter 4 suggest that such shattering is also difficult

for CNF-XOR solvers; proving this analytically is an exciting direction for future

work that may lead to practical improvements for SAT solvers used in hashing-based
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sampling and counting algorithms.

The hardness of unsatisfiable CNF-XOR formulas The shattering of the

CNF-XOR solution-space described in Section 4.4 does not explain the exponen-

tial scaling of CryptoMiniSAT when the formula is unsatisfiable. Similar exponential

scaling was observed for random k-CNF formulas in the unsatisfiable region [30].

In the case of random k-CNF formulas, this is explained by the exponential reso-

lution complexity (w.h.p.) of random k-CNF formulas (when the clause-density is

large) [53], which implies that all DPLL-type algorithms require exponential time

w.h.p. to prove unsatisfiability within the unsatisfiable region. It may be possible

to extend this analysis to show that the reasoning techniques used by specialized

CNF-XOR solvers require exponential time w.h.p. to prove unsatisfiability within

the unsatisfiable region as well.
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[53] V. Chvátal and E. Szemerédi, “Many hard examples for resolution,” Journal of

the ACM (JACM), vol. 35, no. 4, pp. 759–768, 1988.


