6,019 research outputs found

    Upgrade a Medium Size Enterprise Power System with Wind and Solar Sources: Design, Financial and Environmental Perspectives

    Get PDF
    Efficient generation and distribution are crucial for economic power production. In this paper we discuss the planning and design of upgrading a medium size enterprise power system by installing Distributed Energy Resources (DERs), with particular emphasis on economic viability and environmental benefits. The planning for this project considers both conventional grid and SmartGrid connections. Project planning, installation challenges and governmental support of renewable energy projects in Australia are discussed. It is found that upgrading a medium size enterprise power system with DERs can yield reasonable levels of energy cost savings and greenhouse gas mitigation with both conventional grid and SmartGrid connections, but that SmartGrid connection can deliver better outcomes

    Secure Communication Architecture for Dynamic Energy Management in Smart Grid

    Get PDF
    open access articleSmart grid takes advantage of communication technologies for efficient energy management and utilization. It entails sacrifice from consumers in terms of reducing load during peak hours by using a dynamic energy pricing model. To enable an active participation of consumers in load management, the concept of home energy gateway (HEG) has recently been proposed in the literature. However, the HEG concept is rather new, and the literature still lacks to address challenges related to data representation, seamless discovery, interoperability, security, and privacy. This paper presents the design of a communication framework that effectively copes with the interoperability and integration challenges between devices from different manufacturers. The proposed communication framework offers seamless auto-discovery and zero- con figuration-based networking between heterogeneous devices at consumer sites. It uses elliptic-curve-based security mechanism for protecting consumers' privacy and providing the best possible shield against different types of cyberattacks. Experiments in real networking environment validated that the proposed communication framework is lightweight, secure, portable with low-bandwidth requirement, and flexible to be adopted for dynamic energy management in smart grid

    A Lightweight Privacy-Preserved Spatial and Temporal Aggregation of Energy Data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    An H∞ design for dynamic pricing in the smart grid.

    Get PDF
    An H∞ design for dynamic pricing in the smart grid is proposed. This design jointly considers the operation of a distribution network operator and a market operator. In the design, a ratio of the regulated output energy to the disturbance energy is minimized to address the worst-case scenario. Linear matrix inequality approaches are used to formulate the design problem as a convex problem. Fuzzy interpolation techniques are integrated into the design procedure so that nonlinear grid dynamics can be addressed. In contrast with existing designs, the proposed design can yield a more reliable and practical pricing scheme as shown via simulations

    Optimal Fully Electric Vehicle load balancing with an ADMM algorithm in Smartgrids

    Full text link
    In this paper we present a system architecture and a suitable control methodology for the load balancing of Fully Electric Vehicles at Charging Station (CS). Within the proposed architecture, control methodologies allow to adapt Distributed Energy Resources (DER) generation profiles and active loads to ensure economic benefits to each actor. The key aspect is the organization in two levels of control: at local level a Load Area Controller (LAC) optimally calculates the FEVs charging sessions, while at higher level a Macro Load Area Aggregator (MLAA) provides DER with energy production profiles, and LACs with energy withdrawal profiles. Proposed control methodologies involve the solution of a Walrasian market equilibrium and the design of a distributed algorithm.Comment: This paper has been accepted for the 21st Mediterranean Conference on Control and Automation, therefore it is subjected to IEEE Copyrights. See IEEE copyright notice at http://www.ieee.org/documents/ieeecopyrightform.pd

    The concept of energy traceability: Application to EV electricity charging by Res

    Get PDF
    The energy sustainability, in the era of sources diversification , can be guaranteed by an energy resources utilization most correct, foreseeing no predominance of one source over the others in any area of the world but a proper energy mix, based on locally available resources and needs. In this scenario, manageable with a smart grid system, a virtuous use of RES must be visible, recognizable and quantifiable, in one word traceable. The innovation of the traceability concept consists in the possibility of having information concerning the exact origin of the electricity used for a specific end use, in this case EV charging . The traceability, in a context of increasingly sustainability and smartness city, is an important develop tool because only in this way it is possible to quantify the real emissions produced by EVs and to ensure the real foresight of grid load. This paper wants investigate the real ways to introduce this kind of real energy accounting, through the traceabilit

    Secure and energy-efficient multicast routing in smart grids

    Get PDF
    A smart grid is a power system that uses information and communication technology to operate, monitor, and control data flows between the power generating source and the end user. It aims at high efficiency, reliability, and sustainability of the electricity supply process that is provided by the utility centre and is distributed from generation stations to clients. To this end, energy-efficient multicast communication is an important requirement to serve a group of residents in a neighbourhood. However, the multicast routing introduces new challenges in terms of secure operation of the smart grid and user privacy. In this paper, after having analysed the security threats for multicast-enabled smart grids, we propose a novel multicast routing protocol that is both sufficiently secure and energy efficient.We also evaluate the performance of the proposed protocol by means of computer simulations, in terms of its energy-efficient operation
    corecore