3,166 research outputs found

    The Latent Relation Mapping Engine: Algorithm and Experiments

    Full text link
    Many AI researchers and cognitive scientists have argued that analogy is the core of cognition. The most influential work on computational modeling of analogy-making is Structure Mapping Theory (SMT) and its implementation in the Structure Mapping Engine (SME). A limitation of SME is the requirement for complex hand-coded representations. We introduce the Latent Relation Mapping Engine (LRME), which combines ideas from SME and Latent Relational Analysis (LRA) in order to remove the requirement for hand-coded representations. LRME builds analogical mappings between lists of words, using a large corpus of raw text to automatically discover the semantic relations among the words. We evaluate LRME on a set of twenty analogical mapping problems, ten based on scientific analogies and ten based on common metaphors. LRME achieves human-level performance on the twenty problems. We compare LRME with a variety of alternative approaches and find that they are not able to reach the same level of performance.Comment: related work available at http://purl.org/peter.turney

    Dissecting Deep Language Models: The Explainability and Bias Perspective

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Paraphrasing evades detectors of AI-generated text, but retrieval is an effective defense

    Full text link
    The rise in malicious usage of large language models, such as fake content creation and academic plagiarism, has motivated the development of approaches that identify AI-generated text, including those based on watermarking or outlier detection. However, the robustness of these detection algorithms to paraphrases of AI-generated text remains unclear. To stress test these detectors, we build a 11B parameter paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering. Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking, GPTZero, DetectGPT, and OpenAI's text classifier. For example, DIPPER drops detection accuracy of DetectGPT from 70.3% to 4.6% (at a constant false positive rate of 1%), without appreciably modifying the input semantics. To increase the robustness of AI-generated text detection to paraphrase attacks, we introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider. Given a candidate text, our algorithm searches a database of sequences previously generated by the API, looking for sequences that match the candidate text within a certain threshold. We empirically verify our defense using a database of 15M generations from a fine-tuned T5-XXL model and find that it can detect 80% to 97% of paraphrased generations across different settings while only classifying 1% of human-written sequences as AI-generated. We open-source our models, code and data.Comment: NeurIPS 2023 camera ready (32 pages). Code, models, data available in https://github.com/martiansideofthemoon/ai-detection-paraphrase

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Natural Language Processing for Technology Foresight Summarization and Simplification: the case of patents

    Get PDF
    Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts.Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading

    Searching to Translate and Translating to Search: When Information Retrieval Meets Machine Translation

    Get PDF
    With the adoption of web services in daily life, people have access to tremendous amounts of information, beyond any human's reading and comprehension capabilities. As a result, search technologies have become a fundamental tool for accessing information. Furthermore, the web contains information in multiple languages, introducing another barrier between people and information. Therefore, search technologies need to handle content written in multiple languages, which requires techniques to account for the linguistic differences. Information Retrieval (IR) is the study of search techniques, in which the task is to find material relevant to a given information need. Cross-Language Information Retrieval (CLIR) is a special case of IR when the search takes place in a multi-lingual collection. Of course, it is not helpful to retrieve content in languages the user cannot understand. Machine Translation (MT) studies the translation of text from one language into another efficiently (within a reasonable amount of time) and effectively (fluent and retaining the original meaning), which helps people understand what is being written, regardless of the source language. Putting these together, we observe that search and translation technologies are part of an important user application, calling for a better integration of search (IR) and translation (MT), since these two technologies need to work together to produce high-quality output. In this dissertation, the main goal is to build better connections between IR and MT, for which we present solutions to two problems: Searching to translate explores approximate search techniques for extracting bilingual data from multilingual Wikipedia collections to train better translation models. Translating to search explores the integration of a modern statistical MT system into the cross-language search processes. In both cases, our best-performing approach yielded improvements over strong baselines for a variety of language pairs. Finally, we propose a general architecture, in which various components of IR and MT systems can be connected together into a feedback loop, with potential improvements to both search and translation tasks. We hope that the ideas presented in this dissertation will spur more interest in the integration of search and translation technologies
    • …
    corecore