234 research outputs found

    Toward Smart Moving Target Defense for Linux Container Resiliency

    Full text link
    This paper presents ESCAPE, an informed moving target defense mechanism for cloud containers. ESCAPE models the interaction between attackers and their target containers as a "predator searching for a prey" search game. Live migration of Linux-containers (prey) is used to avoid attacks (predator) and failures. The entire process is guided by a novel host-based behavior-monitoring system that seamlessly monitors containers for indications of intrusions and attacks. To evaluate ESCAPE effectiveness, we simulated the attack avoidance process based on a mathematical model mimicking the prey-vs-predator search game. Simulation results show high container survival probabilities with minimal added overhead.Comment: Published version is available on IEEE Xplore at http://ieeexplore.ieee.org/document/779685

    MystifY : A Proactive Moving-Target Defense for a Resilient SDN Controller in Software Defined CPS

    Get PDF
    The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers. In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure the SD-CPS infrastructure. In this paper, we relied on Smart Grid networks as crucial SD-CPS application to evaluate our presented solution. MystifY’s MTD relies on a set of pillars to ensure the SDN controller resiliency against failures and attacks. The 1st pillar is a grid-aware algorithm that optimally allocates the most suitable controller–deployment location in large-scale grids. The 2nd pillar is a special diversifier that dynamically relocates the controller between heterogeneously configured hosts to avoid host-based attacks. The 3rd pillar is a temporal diversifier that dynamically detours controller–workload between multiple controllers to enhance their reliability and to detect and avoid controller intrusions. Our experimental results showed the efficiency and effectiveness of the presented approach

    Security and trust in cloud computing and IoT through applying obfuscation, diversification, and trusted computing technologies

    Get PDF
    Cloud computing and Internet of Things (IoT) are very widely spread and commonly used technologies nowadays. The advanced services offered by cloud computing have made it a highly demanded technology. Enterprises and businesses are more and more relying on the cloud to deliver services to their customers. The prevalent use of cloud means that more data is stored outside the organization’s premises, which raises concerns about the security and privacy of the stored and processed data. This highlights the significance of effective security practices to secure the cloud infrastructure. The number of IoT devices is growing rapidly and the technology is being employed in a wide range of sectors including smart healthcare, industry automation, and smart environments. These devices collect and exchange a great deal of information, some of which may contain critical and personal data of the users of the device. Hence, it is highly significant to protect the collected and shared data over the network; notwithstanding, the studies signify that attacks on these devices are increasing, while a high percentage of IoT devices lack proper security measures to protect the devices, the data, and the privacy of the users. In this dissertation, we study the security of cloud computing and IoT and propose software-based security approaches supported by the hardware-based technologies to provide robust measures for enhancing the security of these environments. To achieve this goal, we use obfuscation and diversification as the potential software security techniques. Code obfuscation protects the software from malicious reverse engineering and diversification mitigates the risk of large-scale exploits. We study trusted computing and Trusted Execution Environments (TEE) as the hardware-based security solutions. Trusted Platform Module (TPM) provides security and trust through a hardware root of trust, and assures the integrity of a platform. We also study Intel SGX which is a TEE solution that guarantees the integrity and confidentiality of the code and data loaded onto its protected container, enclave. More precisely, through obfuscation and diversification of the operating systems and APIs of the IoT devices, we secure them at the application level, and by obfuscation and diversification of the communication protocols, we protect the communication of data between them at the network level. For securing the cloud computing, we employ obfuscation and diversification techniques for securing the cloud computing software at the client-side. For an enhanced level of security, we employ hardware-based security solutions, TPM and SGX. These solutions, in addition to security, ensure layered trust in various layers from hardware to the application. As the result of this PhD research, this dissertation addresses a number of security risks targeting IoT and cloud computing through the delivered publications and presents a brief outlook on the future research directions.Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaavat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsittelyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia taltioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infrastruktuurin turvaamista. Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknologiana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä terveydenhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet keräävät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa. Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tietoturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai niiden käyttäjien yksityisen tiedon suojaamiseksi. Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja turvautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymistavat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina. Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takaisinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkaisuina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuksellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön, saarekkeen, tekniseen toteutukseen. Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellusrajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokollakerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla. Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio ja diversifiointitekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturvallisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat monikerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen asti. Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vastataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista

    Configuration Management of Distributed Systems over Unreliable and Hostile Networks

    Get PDF
    Economic incentives of large criminal profits and the threat of legal consequences have pushed criminals to continuously improve their malware, especially command and control channels. This thesis applied concepts from successful malware command and control to explore the survivability and resilience of benign configuration management systems. This work expands on existing stage models of malware life cycle to contribute a new model for identifying malware concepts applicable to benign configuration management. The Hidden Master architecture is a contribution to master-agent network communication. In the Hidden Master architecture, communication between master and agent is asynchronous and can operate trough intermediate nodes. This protects the master secret key, which gives full control of all computers participating in configuration management. Multiple improvements to idempotent configuration were proposed, including the definition of the minimal base resource dependency model, simplified resource revalidation and the use of imperative general purpose language for defining idempotent configuration. Following the constructive research approach, the improvements to configuration management were designed into two prototypes. This allowed validation in laboratory testing, in two case studies and in expert interviews. In laboratory testing, the Hidden Master prototype was more resilient than leading configuration management tools in high load and low memory conditions, and against packet loss and corruption. Only the research prototype was adaptable to a network without stable topology due to the asynchronous nature of the Hidden Master architecture. The main case study used the research prototype in a complex environment to deploy a multi-room, authenticated audiovisual system for a client of an organization deploying the configuration. The case studies indicated that imperative general purpose language can be used for idempotent configuration in real life, for defining new configurations in unexpected situations using the base resources, and abstracting those using standard language features; and that such a system seems easy to learn. Potential business benefits were identified and evaluated using individual semistructured expert interviews. Respondents agreed that the models and the Hidden Master architecture could reduce costs and risks, improve developer productivity and allow faster time-to-market. Protection of master secret keys and the reduced need for incident response were seen as key drivers for improved security. Low-cost geographic scaling and leveraging file serving capabilities of commodity servers were seen to improve scaling and resiliency. Respondents identified jurisdictional legal limitations to encryption and requirements for cloud operator auditing as factors potentially limiting the full use of some concepts

    Low delay network attributes randomization to proactively mitigate reconnaissance attacks in industrial control systems

    Get PDF
    Industrial Control Systems are used in a wide variety of industrial facilities, including critical infrastructures, becoming the main target of multiple security attacks. A malicious and successful attack against these infrastructures could cause serious economic and environmental consequences, including the loss of human lives. Static networks configurations and topologies, which characterize Industrial Control Systems, represent an advantage for attackers, allowing them to scan for vulnerable devices or services before carrying out the attack. Identifying active devices and services is often the first step for many attacks. This paper presents a proactive network reconnaissance defense mechanism based on the temporal randomization of network IP addresses, MAC addresses and port numbers. The obtained information distortion minimizes the knowledge acquired by the attackers, hindering any attack that relies on network addressing. The temporal randomization of network attributes is performed in an adaptive way, minimizing the overhead introduced in the network and avoiding any error and latency in communications. The implementation as well as the tests have been carried out in a laboratory with real industrial equipment, demonstrating the effectiveness of the presented solution

    Towards an Uncertainty-Aware Adaptive Decision Engine for Self-Protecting Software: an POMDP-based Approach

    Full text link
    The threats posed by evolving cyberattacks have led to increased research related to software systems that can self-protect. One topic in this domain is Moving Target Defense (MTD), which changes software characteristics in the protected system to make it harder for attackers to exploit vulnerabilities. However, MTD implementation and deployment are often impacted by run-time uncertainties, and existing MTD decision-making solutions have neglected uncertainty in model parameters and lack self-adaptation. This paper aims to address this gap by proposing an approach for an uncertainty-aware and self-adaptive MTD decision engine based on Partially Observable Markov Decision Process and Bayesian Learning techniques. The proposed approach considers uncertainty in both state and model parameters; thus, it has the potential to better capture environmental variability and improve defense strategies. A preliminary study is presented to highlight the potential effectiveness and challenges of the proposed approach

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms
    corecore