3,720 research outputs found

    Natural Language Processing for Medical Texts – A Taxonomy to Inform Integration Decisions into Clinical Practice

    Get PDF
    Electronic health records (EHR) have significantly amplified the volume of information accessible in the healthcare sector. Nevertheless, this information load also translates into elevated workloads for clinicians engaged in extracting and generating patient information. Natural Language Process (NLP) aims to overcome this problem by automatically extracting and structuring relevant information from medical texts. While other methods related to artificial intelligence have been implemented successfully in healthcare (e.g., computer vision in radiology), NLP still lacks commercial success in this domain. The lack of a structured overview of NLP systems is exacerbating the problem, especially with the emergence of new technologies like generative pre-trained transformers. Against this background, this paper presents a taxonomy to inform integration decisions of NLP systems into healthcare IT landscapes. We contribute to a better understanding of how NLP systems can be integrated into daily clinical contexts. In total, we reviewed 29 papers and 36 commercial NLP products

    A Rule of Persons, Not Machines: The Limits of Legal Automation

    Get PDF

    Personal Health Train on FHIR:A Privacy Preserving Federated Approach for Analyzing FAIR Data in Healthcare

    Get PDF
    Big data and machine learning applications focus on retrieving data on a central location for analysis. However, healthcare data can be sensitive in nature and as such difficult to share and make use for secondary purposes. Healthcare vendors are restricted to share data without proper consent from the patient. There is a rising awareness among individual patients as well regarding sharing their personal information due to ethical, legal and societal problems. The current data-sharing platforms in healthcare do not sufficiently handle these issues. The rationale of the Personal Health Train (PHT) approach shifts the focus from sharing data to sharing processing/analysis applications and their respective results. A prerequisite of the PHT-infrastructure is that the data is FAIR (findable, accessible, interoperable, reusable). The aim of the paper is to describe a methodology of finding the number of patients diagnosed with hypertension and calculate cohort statistics in a privacy-preserving federated manner. The whole process completes without individual patient data leaving the source. For this, we rely on the Fast Healthcare Interoperability Resources (FHIR) standard

    Exploring AI Tool's Versatile Responses: An In-depth Analysis Across Different Industries and Its Performance Evaluation

    Full text link
    AI Tool is a large language model (LLM) designed to generate human-like responses in natural language conversations. It is trained on a massive corpus of text from the internet, which allows it to leverage a broad understanding of language, general knowledge, and various domains. AI Tool can provide information, engage in conversations, assist with tasks, and even offer creative suggestions. The underlying technology behind AI Tool is a transformer neural network. Transformers excel at capturing long-range dependencies in text, making them well-suited for language-related tasks. AI Tool has 175 billion parameters, making it one of the largest and most powerful LLMs to date. This work presents an overview of AI Tool's responses on various sectors of industry. Further, the responses of AI Tool have been cross-verified with human experts in the corresponding fields. To validate the performance of AI Tool, a few explicit parameters have been considered and the evaluation has been done. This study will help the research community and other users to understand the uses of AI Tool and its interaction pattern. The results of this study show that AI Tool is able to generate human-like responses that are both informative and engaging. However, it is important to note that AI Tool can occasionally produce incorrect or nonsensical answers. It is therefore important to critically evaluate the information that AI Tool provides and to verify it from reliable sources when necessary. Overall, this study suggests that AI Tool is a promising new tool for natural language processing, and that it has the potential to be used in a wide variety of applications

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Status and recommendations of technological and data-driven innovations in cancer care:Focus group study

    Get PDF
    Background: The status of the data-driven management of cancer care as well as the challenges, opportunities, and recommendations aimed at accelerating the rate of progress in this field are topics of great interest. Two international workshops, one conducted in June 2019 in Cordoba, Spain, and one in October 2019 in Athens, Greece, were organized by four Horizon 2020 (H2020) European Union (EU)-funded projects: BOUNCE, CATCH ITN, DESIREE, and MyPal. The issues covered included patient engagement, knowledge and data-driven decision support systems, patient journey, rehabilitation, personalized diagnosis, trust, assessment of guidelines, and interoperability of information and communication technology (ICT) platforms. A series of recommendations was provided as the complex landscape of data-driven technical innovation in cancer care was portrayed. Objective: This study aims to provide information on the current state of the art of technology and data-driven innovations for the management of cancer care through the work of four EU H2020-funded projects. Methods: Two international workshops on ICT in the management of cancer care were held, and several topics were identified through discussion among the participants. A focus group was formulated after the second workshop, in which the status of technological and data-driven cancer management as well as the challenges, opportunities, and recommendations in this area were collected and analyzed. Results: Technical and data-driven innovations provide promising tools for the management of cancer care. However, several challenges must be successfully addressed, such as patient engagement, interoperability of ICT-based systems, knowledge management, and trust. This paper analyzes these challenges, which can be opportunities for further research and practical implementation and can provide practical recommendations for future work. Conclusions: Technology and data-driven innovations are becoming an integral part of cancer care management. In this process, specific challenges need to be addressed, such as increasing trust and engaging the whole stakeholder ecosystem, to fully benefit from these innovations

    Blended Value Investing: Capital Opportunities for Social and Environmental Impact

    Get PDF
    This paper is offered not as a fully comprehensive survey of the emerging area of blended value investing, but rather as a set of examples of how such investing practices are being developed and applied around the world. The paper's intent is not to provide a single answer for all investment challenges, but to demonstrate how groups of investors are mobilizing capital on new terms to meet the challenges of emerging investment opportunities, as well as the demands of investors seeking out new asset classes in which to place their capital.This paper presents innovations in capital finance that promise to bridge market-rate interests with strategic opportunities to create blended value that benefits shareholder and stakeholder alike. The following examples speak to an evolving capital convergence wherein mainstream capital markets and investing will increasingly become drivers of new solutions to historic problems. Blended value investing funds and instruments offer financing strategies a set of tools that go beyond traditional philanthropy or market rate investing and which complement the vision we all share of a world with greater equity and opportunity for its members.This paper also identifies several areas of research that would help advance the field of blended value investing. Finally, the paper concludes with words of caution that suggest a prudent approach to developing blended value capital markets. It offers a critique of the state of the markets, presents a strategic vision for the blended value capital markets, and suggests specific steps that participants might take in moving toward the ideal

    Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature

    Get PDF
    The booming adoption of Artificial Intelligence (AI) likewise poses benefits and challenges. In this paper, we particularly focus on the bright side of AI and its promising potential to face our society’s grand challenges. Given this potential, different studies have already conducted valuable work by conceptualizing specific facets of AI and sustainability, including reviews on AI and Information Systems (IS) research or AI and business values. Nonetheless, there is still little holistic knowledge at the intersection of IS, AI, and sustainability. This is problematic because the IS discipline, with its socio-technical nature, has the ability to integrate perspectives beyond the currently dominant technological one as well as can advance both theory and the development of purposeful artifacts. To bridge this gap, we disclose how IS research currently makes use of AI to boost sustainable development. Based on a systematically collected corpus of 95 articles, we examine sustainability goals, data inputs, technologies and algorithms, and evaluation approaches that coin the current state of the art within the IS discipline. This comprehensive overview enables us to make more informed investments (e.g., policy and practice) as well as to discuss blind spots and possible directions for future research
    • …
    corecore