19,581 research outputs found

    Device characteristics-based differentiated energy-efficient adaptive solution for multimedia delivery over heterogeneous wireless networks

    Get PDF
    Energy efïŹciency is a key issue of highest importance to mobile wireless device users, as those devices are powered by batteries with limited power capacity. It is of very high interest to provide device differentiated user centric energy efficient multimedia content delivery based on current application type, energy-oriented device features and user preferences. This thesis presents the following research contributions in the area of energy efïŹcient multimedia delivery over heterogeneous wireless networks: 1. ASP: Energy-oriented Application-based System proïŹling for mobile devices: This proïŹling provides services to other contributions in this thesis. By monitoring the running applications and the corresponding power demand on the smart mobile device, a device energy model is obtained. The model is used in conjunction with applications’ power signature to provide device energy constraints posed by running applications. 2. AWERA 3. DEAS: A Device characteristics-based differentiated Energy-efïŹcient Adaptive Solution for video delivery over heterogeneous wireless networks. Based on the energy constraint, DEAS performs energy efïŹcient content delivery adaptation for the current application. Unlike the existing solutions, DEAS takes all the applications running on the system into account and better balances QoS and energy efïŹciency. 4. EDCAM 5. A comprehensive survey on state-of-the-art energy-efïŹcient network protocols and energy-saving network technologies

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications
    • 

    corecore