4 research outputs found

    Smart City Development with Urban Transfer Learning

    Full text link
    Nowadays, the smart city development levels of different cities are still unbalanced. For a large number of cities which just started development, the governments will face a critical cold-start problem: 'how to develop a new smart city service with limited data?'. To address this problem, transfer learning can be leveraged to accelerate the smart city development, which we term the urban transfer learning paradigm. This article investigates the common process of urban transfer learning, aiming to provide city planners and relevant practitioners with guidelines on how to apply this novel learning paradigm. Our guidelines include common transfer strategies to take, general steps to follow, and case studies in public safety, transportation management, etc. We also summarize a few research opportunities and expect this article can attract more researchers to study urban transfer learning

    DeepStore: an interaction-aware Wide&Deep model for store site recommendation with attentional spatial embeddings

    Get PDF
    International audienceStore site recommendation is one of the essential business services in smart cities for brick-and-mortar enterprises. In recent years, the proliferation of multisource data in cities has fostered unprecedented opportunities to the data-driven store site recommendation, which aims at leveraging large-scale user-generated data to analyze and mine users' preferences for identifying the optimal location for a new store. However, most works in store site recommendation pay more attention to a single data source which lacks some significant data (e.g., consumption data and user profile data). In this paper, we aim to study the store site recommendation in a fine-grained manner. Specifically, we predict the consumption level of different users at the store based on multisource data, which can not only help the store placement but also benefit analyzing customer behavior in the store at different time periods. To solve this problem, we design a novel model based on the deep neural network, named DeepStore, which learns low-and high-order feature interactions explicitly and implicitly from dense and sparse features simultaneously. In particular, DeepStore incorporates three modules: 1) the cross network; 2) the deep network; and 3) the linear component. In addition, to learn the latent feature representation from multisource data, we propose two embedding methods for different types of data: 1) the filed embedding and 2) attention-based spatial embedding. Extensive experiments are conducted on a real-world dataset including store data, user data, and point-of-interest data, the results demonstrate that DeepStore outperforms the state-of-the-art models

    IoT Technology Applications-Based Smart Cities: Research Analysis

    Get PDF
    The development of technologies enables the application of the Internet of Things (IoT) in urban environments, creating smart cities. Hence, the optimal management of data generated in the interconnection of electronic sensors in real time improves the quality of life. The objective of this study is to analyze global research on smart cities based on IoT technology applications. For this, bibliometric techniques were applied to 1232 documents on this topic, corresponding to the period 2011–2019, to obtain findings on scientific activity and the main thematic areas. Scientific production has increased annually, so that the last triennium has accumulated 83.23% of the publications. The most outstanding thematic areas were Computer Science and Engineering. Seven lines have been identified in the development of research on smart cities based on IoT applications. In addition, the study has detected seven new future research directions. The growing trend at the global level of scientific production shows the interest in developing aspects of smart cities based on IoT applications. This study contributes to the academic, scientific, and institutional discussion to improve decision making based on the available information

    Smart City Development With Urban Transfer Learning

    No full text
    corecore