3 research outputs found

    Design and simulation of an analog beamforming phased array antenna

    Get PDF
    In this paper, a phased array antenna is designed and simulated. The antenna array consists of four circularly polarized slotted waveguide elements. The antenna array is simulated using CST MWS. The simulation results for the proposed antenna array at different values of progressive phase shift demonstrate that the S‒parameters for all four ports are less than ‒10 dB over at least 2% bandwidth, the simulated maximum gain is 13.95 dB, the simulated beamwidth can be 19˚ or narrower based on the value of the progressive phase shift. , the range of frequencies over which the simulated Axial Ratio (AR) is below 3 dB is not fixed and varied according to the selected progressive phase shift. The proposed four-element RF front-end is simulated using Advanced Design System (ADS) at operating frequency of 9.6 GHz. The obtained simulation results by ADS indicate the feasibility of implementing the proposed RF-front end for feeding the antenna array to realize analog beamforming

    Smart Antenna UKM Testbed for Digital Beamforming System

    No full text
    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated

    Smart Antenna UKM Testbed for Digital Beamforming System

    No full text
    corecore