565 research outputs found

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    Shortened Array Codes of Large Girth

    Full text link
    One approach to designing structured low-density parity-check (LDPC) codes with large girth is to shorten codes with small girth in such a manner that the deleted columns of the parity-check matrix contain all the variables involved in short cycles. This approach is especially effective if the parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is the case for the class of codes known as array codes. We show how to shorten array codes by deleting certain columns of their parity-check matrices so as to increase their girth. The shortening approach is based on the observation that for array codes, and in fact for a slightly more general class of LDPC codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear equations with integer coefficients. Consequently, we can selectively eliminate cycles from an array code by only retaining those columns from the parity-check matrix of the original code that are indexed by integer sequences that do not contain solutions to the equations governing those cycles. We provide Ramsey-theoretic estimates for the maximum number of columns that can be retained from the original parity-check matrix with the property that the sequence of their indices avoid solutions to various types of cycle-governing equations. This translates to estimates of the rate penalty incurred in shortening a code to eliminate cycles. Simulation results show that for the codes considered, shortening them to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication over an additive white Gaussian noise channel.Comment: 16 pages; 8 figures; to appear in IEEE Transactions on Information Theory, Aug 200

    Cycle lengths in sparse graphs

    Full text link
    Let C(G) denote the set of lengths of cycles in a graph G. In the first part of this paper, we study the minimum possible value of |C(G)| over all graphs G of average degree d and girth g. Erdos conjectured that |C(G)| =\Omega(d^{\lfloor (g-1)/2\rfloor}) for all such graphs, and we prove this conjecture. In particular, the longest cycle in a graph of average degree d and girth g has length \Omega(d^{\lfloor (g-1)/2\rfloor}). The study of this problem was initiated by Ore in 1967 and our result improves all previously known lower bounds on the length of the longest cycle. Moreover, our bound cannot be improved in general, since known constructions of d-regular Moore Graphs of girth g have roughly that many vertices. We also show that \Omega(d^{\lfloor (g-1)/2\rfloor}) is a lower bound for the number of odd cycle lengths in a graph of chromatic number d and girth g. Further results are obtained for the number of cycle lengths in H-free graphs of average degree d. In the second part of the paper, motivated by the conjecture of Erdos and Gyarfas that every graph of minimum degree at least three contains a cycle of length a power of two, we prove a general theorem which gives an upper bound on the average degree of an n-vertex graph with no cycle of even length in a prescribed infinite sequence of integers. For many sequences, including the powers of two, our theorem gives the upper bound e^{O(\log^* n)} on the average degree of graph of order n with no cycle of length in the sequence, where \log^* n is the number of times the binary logarithm must be applied to n to get a number which is at mos

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length ℓ\ell affects the number of colours required as d→∞d\to\infty. For vertex-colouring and t≥1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length ℓ≥3t\ell \ge 3t if tt is odd or by excluding an even cycle length ℓ≥2t+2\ell \ge 2t+2. For edge-colouring and t≥2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length ℓ≥2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t≥2t\ge 2, neither of the above statements are possible for other parity combinations of ℓ\ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Fast regocnition of planar non unit distance graphs

    Full text link
    We study criteria attesting that a given graph can not be embedded in the plane so that neighboring vertices are at unit distance apart and the straight line edges do not cross.Comment: 9 pages, 1 table, 5 figure
    • …
    corecore