4 research outputs found

    Covering many points with a small-area box

    Get PDF
    Let PP be a set of nn points in the plane. We show how to find, for a given integer k>0k>0, the smallest-area axis-parallel rectangle that covers kk points of PP in O(nk2log⁥n+nlog⁥2n)O(nk^2 \log n+ n\log^2 n) time. We also consider the problem of, given a value α>0\alpha>0, covering as many points of PP as possible with an axis-parallel rectangle of area at most α\alpha. For this problem we give a probabilistic (1−Δ)(1-\varepsilon)-approximation that works in near-linear time: In O((n/Δ4)log⁥3nlog⁥(1/Δ))O((n/\varepsilon^4)\log^3 n \log (1/\varepsilon)) time we find an axis-parallel rectangle of area at most α\alpha that, with high probability, covers at least (1−Δ)Îș∗(1-\varepsilon)\mathrm{\kappa^*} points, where Îș∗\mathrm{\kappa^*} is the maximum possible number of points that could be covered

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≄ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore