32 research outputs found

    On the smallest snarks with oddness 4 and connectivity 2

    Get PDF
    A snark is a bridgeless cubic graph which is not 3-edge-colourable. The oddness of a bridgeless cubic graph is the minimum number of odd components in any 2-factor of the graph. Lukot'ka, M\'acajov\'a, Maz\'ak and \v{S}koviera showed in [Electron. J. Combin. 22 (2015)] that the smallest snark with oddness 4 has 28 vertices and remarked that there are exactly two such graphs of that order. However, this remark is incorrect as -- using an exhaustive computer search -- we show that there are in fact three snarks with oddness 4 on 28 vertices. In this note we present the missing snark and also determine all snarks with oddness 4 up to 34 vertices.Comment: 5 page

    Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44

    Get PDF
    The family of snarks -- connected bridgeless cubic graphs that cannot be 3-edge-coloured -- is well-known as a potential source of counterexamples to several important and long-standing conjectures in graph theory. These include the cycle double cover conjecture, Tutte's 5-flow conjecture, Fulkerson's conjecture, and several others. One way of approaching these conjectures is through the study of structural properties of snarks and construction of small examples with given properties. In this paper we deal with the problem of determining the smallest order of a nontrivial snark (that is, one which is cyclically 4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of structural analysis with extensive computations we prove that the smallest order of a snark with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such a snark must have at least 38 vertices [J. Combin. Theory Ser. B 103 (2013), 468--488] and one such snark on 44 vertices was constructed by Lukot'ka et al. [Electron. J. Combin. 22 (2015), #P1.51]. The proof requires determining all cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled list of all such snarks up to 34 vertices [J. Combin. Theory Ser. B, loc. cit.]. As a by-product, we use this new list to test the validity of several conjectures where snarks can be smallest counterexamples.Comment: 21 page

    An exploration of two infinite families of snarks

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019In this paper, we generalize a single example of a snark that admits a drawing with even rotational symmetry into two infinite families using a voltage graph construction techniques derived from cyclic Pseudo-Loupekine snarks. We expose an enforced chirality in coloring the underlying 5-pole that generated the known example, and use this fact to show that the infinite families are in fact snarks. We explore the construction of these families in terms of the blowup construction. We show that a graph in either family with rotational symmetry of order m has automorphism group of order m2m⁺¹. The oddness of graphs in both families is determined exactly, and shown to increase linearly with the order of rotational symmetry.Chapter 1: Introduction -- 1.1 General Graph Theory -- Chapter 2: Introduction to Snarks -- 2.1 History -- 2.2 Motivation -- 2.3 Loupekine Snarks and k-poles -- 2.4 Conditions on Triviality -- Chapter 3: The Construction of Two Families of Snarks -- 3.1 Voltage Graphs and Lifts -- 3.2 The Family of Snarks, Fm -- 3.3 A Second Family of Snarks, Rm -- Chapter 4: Results -- 4.1 Proof that the graphs Fm and Rm are Snarks -- 4.2 Interpreting Fm and Rm as Blowup Graphs -- 4.3 Automorphism Group -- 4.4 Oddness -- Chapter 5: Conclusions and Open Questions -- References

    Petersen cores and the oddness of cubic graphs

    Full text link
    Let GG be a bridgeless cubic graph. Consider a list of kk 1-factors of GG. Let EiE_i be the set of edges contained in precisely ii members of the kk 1-factors. Let μk(G)\mu_k(G) be the smallest E0|E_0| over all lists of kk 1-factors of GG. If GG is not 3-edge-colorable, then μ3(G)3\mu_3(G) \geq 3. In [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206] it is shown that if μ3(G)0\mu_3(G) \not = 0, then 2μ3(G)2 \mu_3(G) is an upper bound for the girth of GG. We show that μ3(G)\mu_3(G) bounds the oddness ω(G)\omega(G) of GG as well. We prove that ω(G)23μ3(G)\omega(G)\leq \frac{2}{3}\mu_3(G). If μ3(G)=23μ3(G)\mu_3(G) = \frac{2}{3} \mu_3(G), then every μ3(G)\mu_3(G)-core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4-edge-connected cubic graph GG with ω(G)=23μ3(G)\omega(G) = \frac{2}{3}\mu_3(G). On the other hand, the difference between ω(G)\omega(G) and 23μ3(G)\frac{2}{3}\mu_3(G) can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer k3k\geq 3, there exists a bridgeless cubic graph GG such that μ3(G)=k\mu_3(G)=k.Comment: 13 pages, 9 figure
    corecore