1,296,807 research outputs found
The small wind turbine field lab extensive field tests for small wind turbines
This paper describes the research possibilities at the Small Wind Turbine Field Lab and the involved research groups of Ghent University, covering different aspects of a small wind energy system. In contrast to large and medium-sized wind turbines, small wind turbines are still plagued by relatively high production and purchase costs, and low reliability and energy yield. Furthermore, most of them have not been subjected to a field test program. Power-Link, the energy knowledge platform of Ghent University, has for three years operated a modest field test site for small wind turbines, that drew the attention of a lot of manufacturers of small wind turbines. In response, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab), to subject small wind turbines to more extensive field tests. Now not only the energy yield is tested, but also topics such as grid integration, structural strength, noise propagation, generator and drive train design and tower construction are studied. All of these parameters are correlated with meteorological data measured on-site
Use of high resolution sonar for near-turbine fish observations (DIDSON) - We@Sea 2007-002
In this study we investigate small scale distribution of pelagic fish within a windfarm by means of a high resolution sonar (DIDSON, Dual frequency IDentification SONar; Soundmetrics). In addition we assess the bias of small scale variations induced by the effects of wind turbines (monopiles) on distribution of the pelagic fish community in the hydro acoustic surveys carried out on the OWEZ Near Shore Wind farm (NSW)
Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer
Wind turbines operate in the atmospheric boundary layer, where they are
exposed to the turbulent atmospheric flows. As the response time of wind
turbine is typically in the range of seconds, they are affected by the small
scale intermittent properties of the turbulent wind. Consequently, basic
features which are known for small-scale homogeneous isotropic turbulence, and
in particular the well-known intermittency problem, have an important impact on
the wind energy conversion process. We report on basic research results
concerning the small-scale intermittent properties of atmospheric flows and
their impact on the wind energy conversion process. The analysis of wind data
shows strongly intermittent statistics of wind fluctuations. To achieve
numerical modeling a data-driven superposition model is proposed. For the
experimental reproduction and adjustment of intermittent flows a so-called
active grid setup is presented. Its ability is shown to generate reproducible
properties of atmospheric flows on the smaller scales of the laboratory
conditions of a wind tunnel. As an application example the response dynamics of
different anemometer types are tested. To achieve a proper understanding of the
impact of intermittent turbulent inflow properties on wind turbines we present
methods of numerical and stochastic modeling, and compare the results to
measurement data. As a summarizing result we find that atmospheric turbulence
imposes its intermittent features on the complete wind energy conversion
process. Intermittent turbulence features are not only present in atmospheric
wind, but are also dominant in the loads on the turbine, i.e. rotor torque and
thrust, and in the electrical power output signal. We conclude that profound
knowledge of turbulent statistics and the application of suitable numerical as
well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201
Economic considerations of utilizing small wind generators
The economic feasibility of small wind generators is compared to that of solar cells, primary batteries, thermoelectric generators, and engine generators. It is shown that small wind generator plants offer an attractive alternative to primary battery systems and constantly running engines to generate power in remote areas. The limitation is an annual average wind velocity of at least 9 to 10 mph. Presently available units are most useful in the average load range of 10 to 1000 watts
2D wind clumping in hot, massive stars from hydrodynamical line-driven instability simulations using a pseudo-planar approach
Context: Clumping in the radiation-driven winds of hot, massive stars arises
naturally due to the strong, intrinsic instability of line-driving (the `LDI').
But LDI wind models have so far mostly been limited to 1D, mainly because of
severe computational challenges regarding calculation of the multi-dimensional
radiation force. Aims: To simulate and examine the dynamics and
multi-dimensional nature of wind structure resulting from the LDI. Methods: We
introduce a `pseudo-planar', `box-in-a-wind' method that allows us to
efficiently compute the line-force in the radial and lateral directions, and
then use this approach to carry out 2D radiation-hydrodynamical simulations of
the time-dependent wind. Results: Our 2D simulations show that the LDI first
manifests itself by mimicking the typical shell-structure seen in 1D models,
but how these shells then quickly break up into complex 2D density and velocity
structures, characterized by small-scale density `clumps' embedded in larger
regions of fast and rarefied gas. Key results of the simulations are that
density-variations in the well-developed wind statistically are quite isotropic
and that characteristic length-scales are small; a typical clump size is ~0.01R
at 2R, thus resulting also in rather low typical clump-masses ~10^17 g.
Overall, our results agree well with the theoretical expectation that the
characteristic scale for LDI-generated wind-structure is of order the Sobolev
length. We further confirm some earlier results that lateral `filling-in' of
radially compressed gas leads to somewhat lower clumping factors in 2D
simulations than in comparable 1D models. We conclude by discussing an
extension of our method toward rotating LDI wind models that exhibit an
intriguing combination of large- and small-scale structure extending down to
the wind base.Comment: 9 pages, 7 figures + 1 Appendix with 1 figure. Recommended for
publication in A&
The small wind turbine field lab
The emerging market of small wind turbines (SWT) is characterised by a large variety of turbine types as well as turbine performance. The abundance of more ‘exotic’ types of vertical axis wind turbines (VAWT) next to the more traditional horizontal axis wind turbines (HAWT) shows that this market is still developing. However, some technologies have proven to possess the same potential typically only found in larger wind turbines. To study the (lack of) performance of current small wind turbine but also to demonstrate their potential, Ghent University decided to launch the Small Wind Turbine Field Lab (SWT Field Lab). This fully scientifically equipped field lab, funded by the Hercules Foundation, offers the possibility to not only monitor the energy yield of the turbine, but also collect information on how to optimise the grid integration, measure mechanical stress and structural strength of turbine components, assess the generator design and tower construction, perform acoustic measurements and finding ways to reduce noise production, even simulate siting of wind turbines, e.g. in rural areas or on industrial parks. All of these parameters are correlated with meteorological data measured on-site. The field lab, based in the inner port of Ostend, provides provisions for placement of up to ten small wind turbines, with seven turbines already partaking in the field trials. The project members aim to use the project results to identify and remove performance limiting factors in the design of small wind turbine, and to demonstrate the feasibility of using small wind turbines for decentralised renewable energy production. With this and similar research projects, the emerging market of small wind turbines can grow beyond its current state of infancy, comparable to the market evolution of large wind turbines
Outdoor lighting wind generators with basalt fiber composite blades
Small wind generators are successfully applied
for outdoor lighting on highways, parks, seaside
boulevards. We developed technologies that gives an
opportunity to manufacture wind rotor, the main element
of this type of generators, using basalt fiber composite,
and to manufacture generator itself. Based on the
research data we manufactured 200 w capacity wind
generator equipped with basalt fiber composite blades
- …
