13 research outputs found

    Retrospective Cost Adaptive Unknown Input Observers with Application to State and Driver Estimation in the Ionosphere-Thermosphere.

    Full text link
    The classical Kalman filter is the optimal state estimator for linear systems under white process and sensor noise with zero mean and finite second moments. In addition, the Kalman filter accommodates the presence of a known, deterministic input. In practice, however, the deterministic input may not be known exactly, and this error can be viewed as a component of the process noise. However, this approach may be too conservative and can lead to bias when the unknown input has a nonzero ``mean'' value. Consequently, a more direct approach is to extend the estimator to include an estimate of the unknown input. In this work, we consider an unknown input observer based on retrospective cost optimization, where the unknown input is estimated by first minimizing a retrospective cost function, and then updating an adaptive feedback system using recursive least squares. The retrospective cost method is a minimal modeling approach that is applicable to both minimum- and nonminimum-phase systems. Since the retrospective cost observer relies on recursive least squares to update an adaptive feedback system, a novel sliding window, variable regularization recursive least squares algorithm is developed and investigated. In contrast to classical recursive least squares algorithms, the sliding window recursive least squares algorithm does not lose its ability to adapt, and does not become unstable when the data lose persistency.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99995/1/asadali_1.pd

    Adaptive filters for sparse system identification

    Get PDF
    Sparse system identification has attracted much attention in the field of adaptive algorithms, and the adaptive filters for sparse system identification are studied. Firstly, a new family of proportionate normalized least mean square (PNLMS) adaptive algorithms that improve the performance of identifying block-sparse systems is proposed. The main proposed algorithm, called block-sparse PNLMS (BS-PNLMS), is based on the optimization of a mixed â„“2,1 norm of the adaptive filter\u27s coefficients. A block-sparse improved PNLMS (BS-IPNLMS) is also derived for both sparse and dispersive impulse responses. Meanwhile, the proposed block-sparse proportionate idea has been extended to both the proportionate affine projection algorithm (PAPA) and the proportionate affine projection sign algorithm (PAPSA). Secondly, a generalized scheme for a family of proportionate algorithms is also presented based on convex optimization. Then a novel low-complexity reweighted PAPA is derived from this generalized scheme which could achieve both better performance and lower complexity than previous ones. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter\u27s coefficients is combined with row action projections (RAP) to significantly reduce the computational complexity. Finally, two variable step-size zero-point attracting projection (VSS-ZAP) algorithms for sparse system identification are proposed. The proposed VSS-ZAPs are based on the approximations of the difference between the sparseness measure of current filter coefficients and the real channel, which could gain lower steady-state misalignment and also track the change in the sparse system --Abstract, page iv

    Multichannel Speech Enhancement

    Get PDF

    Regularized Estimation of High-dimensional Covariance Matrices.

    Full text link
    Many signal processing methods are fundamentally related to the estimation of covariance matrices. In cases where there are a large number of covariates the dimension of covariance matrices is much larger than the number of available data samples. This is especially true in applications where data acquisition is constrained by limited resources such as time, energy, storage and bandwidth. This dissertation attempts to develop necessary components for covariance estimation in the high-dimensional setting. The dissertation makes contributions in two main areas of covariance estimation: (1) high dimensional shrinkage regularized covariance estimation and (2) recursive online complexity regularized estimation with applications of anomaly detection, graph tracking, and compressive sensing. New shrinkage covariance estimation methods are proposed that significantly outperform previous approaches in terms of mean squared error. Two multivariate data scenarios are considered: (1) independently Gaussian distributed data; and (2) heavy tailed elliptically contoured data. For the former scenario we improve on the Ledoit-Wolf (LW) shrinkage estimator using the principle of Rao-Blackwell conditioning and iterative approximation of the clairvoyant estimator. In the latter scenario, we apply a variance normalizing transformation and propose an iterative robust LW shrinkage estimator that is distribution-free within the elliptical family. The proposed robustified estimator is implemented via fixed point iterations with provable convergence and unique limit. A recursive online covariance estimator is proposed for tracking changes in an underlying time-varying graphical model. Covariance estimation is decomposed into multiple decoupled adaptive regression problems. A recursive recursive group lasso is derived using a homotopy approach that generalizes online lasso methods to group sparse system identification. By reducing the memory of the objective function this leads to a group lasso regularized LMS that provably dominates standard LMS. Finally, we introduce a state-of-the-art sampling system, the Modulated Wideband Converter (MWC) which is based on recently developed analog compressive sensing theory. By inferring the block-sparse structures of the high-dimensional covariance matrix from a set of random projections, the MWC is capable of achieving sub-Nyquist sampling for multiband signals with arbitrary carrier frequency over a wide bandwidth.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86396/1/yilun_1.pd

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Sliding-Window RLS Low-Cost Implementation of Proportionate Affine Projection Algorithms

    No full text

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore