7 research outputs found

    The design of quasi-sliding mode control for a permanent magnet synchronous motor with unmatched uncertainties

    Get PDF
    AbstractIn this study, the concept of a quasi-sliding mode control (QSMC) is introduced for the robust control of a permanent magnet synchronous motor (PMSM) system subjected to unmatched uncertainties, and even with input nonlinearity. On the basis of the new concept of QSMC, continuous control is obtained, to avoid the chattering phenomenon. As expected, the system state can be stabilized and driven into a predictable neighborhood of zero. Also, this approach only uses a single controller to achieve chaos control, which reduces the cost and complexity of implementation. The results of numerical simulations demonstrate the validity of the proposed QSMC design method

    Robust synchronization of fractional-order unified chaotic systems via linear control

    Get PDF
    AbstractA new scheme for accomplishing synchronization between two fractional-order unified chaotic systems is proposed in this paper. The scheme does not require that the nonlinear dynamics of the synchronization error system must be eliminated. Moreover, the parameter of the systems does not have to be known. A controller is a linear feedback controller, which is simple in implementation. It is designed based on an LMI condition. The LMI condition guarantees that the synchronization between the slave system and the master system is achieved. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme

    Uncertain Fractional Order Chaotic Systems Tracking Design via Adaptive Hybrid Fuzzy Sliding Mode Control

    Get PDF
    In this paper, in order to achieve tracking performance of uncertain fractional order chaotic systems an adaptive hybrid fuzzy controller is proposed. During the design procedure, a hybrid learning algorithm combining sliding mode control and Lyapunov stability criterion is adopted to tune the free parameters on line by output feedback control law and adaptive law. A weighting factor, which can be adjusted by the trade-off between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive fuzzy controller and direct adaptive fuzzy controller. To confirm effectiveness of the proposed control scheme, the fractional order chaotic response system is fully illustrated to track the trajectory generated from the fractional order chaotic drive system. The numerical results show that tracking error and control effort can be made smaller and the proposed hybrid intelligent control structure is more flexible during the design process

    Robust Synchronization of Incommensurate Fractional-Order Chaotic Systems via Second-Order Sliding Mode Technique

    Get PDF
    A second-order sliding mode (SOSM) controller is proposed to synchronize a class of incommensurate fractional-order chaotic systems with model uncertainties and external disturbances. Based on the chattering free SOSM control scheme, it can be rigorously proved that the dynamics of the synchronization error is globally asymptotically stable by using the Lyapunov stability theorem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller design approach

    Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach

    Full text link

    Robust Position Control of PMSM Using Fractional-Order Sliding Mode Controller

    Get PDF
    A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method
    corecore