1,730 research outputs found

    Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control

    Get PDF
    Electric vehicles with independently controlled drivetrains allow torque vectoring, which enhances active safety and handling qualities. This article proposes an approach for the concurrent control of yaw rate and sideslip angle based on a single-input single-output (SISO) yaw rate controller. With the SISO formulation, the reference yaw rate is first defined according to the vehicle handling requirements and is then corrected based on the actual sideslip angle. The sideslip angle contribution guarantees a prompt corrective action in critical situations such as incipient vehicle oversteer during limit cornering in low tire-road friction conditions. A design methodology in the frequency domain is discussed, including stability analysis based on the theory of switched linear systems. The performance of the control structure is assessed via: 1) phase-plane plots obtained with a nonlinear vehicle model; 2) simulations with an experimentally validated model, including multiple feedback control structures; and 3) experimental tests on an electric vehicle demonstrator along step steer maneuvers with purposely induced and controlled vehicle drift. Results show that the SISO controller allows constraining the sideslip angle within the predetermined thresholds and yields tire-road friction adaptation with all the considered feedback controllers

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    ยฉ 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors

    Get PDF
    With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation. ยฉ 2018, The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Natur

    ๊ณ ์„ฑ๋Šฅ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง์„ ์œ„ํ•œ ์ธํœ ๋ชจํ„ฐ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์ด๊ฒฝ์ˆ˜.์ง€๋‚œ 10๋…„ ๋™์•ˆ ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ(ESC)์€ ์น˜๋ช…์ ์ธ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์ƒ์šฉ ์ฐจ๋Ÿ‰์—์„œ ๋น„์•ฝ์ ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด ์‹œ์Šคํ…œ์€ ์•…์ฒœํ›„๋กœ ์ธํ•œ ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์™€ ๊ฐ™์€ ์œ„ํ—˜ํ•œ ๋„๋กœ์—์„œ ๋ถˆ์•ˆ์ •ํ•œ ์ฐจ๋Ÿ‰ ์ฃผํ–‰ ์กฐ๊ฑด์—์„œ ์‚ฌ๊ณ ๋ฅผ ํ”ผํ•˜๋Š”๋ฐ ํฐ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ตœ๊ทผ์˜ ๊ฒฝ์šฐ, ๊ณ ์„ฑ๋Šฅ ์ฐจ๋Ÿ‰ ๋˜๋Š” ์Šคํฌ์ธ ์นด ๋“ฑ์˜ ๊ฒฝ์šฐ ์ œ๋™์ œ์–ด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐœ์ž…์€ ์šด์ „์˜ ์ฆ๊ฑฐ์›€์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ถˆ๋งŒ๋„ ์กด์žฌํ•œ๋‹ค. ์ตœ๊ทผ ์ฐจ๋Ÿ‰์˜ ์ „๋™ํ™”์™€ ํ•จ๊ป˜, ์ž๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ์˜ ์ž‘๋™ ์˜์—ญ์ธ ํ•œ๊ณ„ ์ฃผํ–‰ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ๊ฐ ํœ ์˜ ๋…๋ฆฝ์ ์ธ ๊ตฌ๋™์„ ์ ์šฉ ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ ์ค‘ ํ•˜๋‚˜์ธ ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰์˜ ์ข…, ํšก๋ฐฉํ–ฅ ํŠน์„ฑ์„ ์ œ์–ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐจ๋Ÿ‰์˜ ์„ ํšŒ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ์•ˆ์ •์„ฑ๊ณผ ์ฃผํ–‰ ๋‹ค์ด๋‚˜๋ฏน ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ €, ์ฐจ๋Ÿ‰์˜ ๋น„์„ ํ˜• ์ฃผํ–‰ ๊ตฌ๊ฐ„์ธ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์— ๋Œ€ํ•œ ์ž๋™ ๋“œ๋ฆฌํ”„ํŠธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ํ† ํฌ๋ฒกํ„ฐ๋ง์ œ์–ด์— ์ฐจ๋Ÿ‰์˜ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰๋ชจ๋“œ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์—์„œ ์ฐจ๋Ÿ‰์˜ ๋†’์€ ์Šฌ๋ฆฝ ๊ฐ๋„์˜ ์•ˆ์ •์„ฑ ์ œ์–ด๋ฅผ ์ œ๊ณต ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์ฐจ๋Ÿ‰์˜ ์ „๋ฅœ์— 2๊ฐœ ๋ชจํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰ ๊ณ ์œ ์˜ ํŠน์„ฑ์ธ ์ฐจ๋Ÿ‰ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ตฌ๋ฐฐ๋ฅผ ์ง์ ‘์  ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ, ์ฐจ๋Ÿ‰์˜ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ œ์–ด๊ธฐ์˜ ์ฑ„ํ„ฐ๋ง ํšจ๊ณผ๋ฅผ ์ค„์ด๊ณ  ๋น ๋ฅธ ์‘๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๊ณผ๋„ ๋งค๊ฐœ ๋ณ€์ˆ˜๊ฐ€ ์ด์šฉํ•˜์—ฌ ์ˆ˜์‹ํ™”ํ•˜์—ฌ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ฐจ๋Ÿ‰์˜ ์ •์ƒ ์ƒํƒœ ๋ฐ ๊ณผ๋„ ํŠน์„ฑ ํ–ฅ์ƒ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ISO ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ฐจ๋Ÿ‰ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์š” ์ œ์–ด๊ธฐ์™€ ํšก ์Šฌ๋ฆฝ ๊ฐ๋„ ์ œ์–ด๊ธฐ๋กœ ๊ตฌ์„ฑ๋œ MASMC (Multiple Adaptive Sliding Mode Control) ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋Š” 4๋ฅœ ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•œ ๋™์  ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋†’์€ ๋น„์„ ํ˜• ํŠน์„ฑ์„ ๊ฐ€์ง„ ์ฐจ๋Ÿ‰์˜ ์ „ํ›„๋ฅœ ํƒ€์ด์–ด์˜ ์ฝ”๋„ˆ๋ง ๊ฐ•์„ฑ์€ ์ ์‘์ œ์–ด๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ์•ˆ์ „๋ชจ๋“œ์™€ ๋‹ค์ด๋‚˜๋ฏน ๋ชจ๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ, ์šด์ „์ž๋กœ ํ•˜์—ฌ๊ธˆ ์›ํ•˜๋Š” ์ฃผํ–‰์˜ ์กฐ๊ฑด์— ๋งž๊ฒŒ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด MASMC ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ–ฅํ›„ ์ „๋™ํ™” ์ฐจ๋Ÿ‰์— ์ฃผํ–‰์•ˆ์ •์„ฑ ํ–ฅ์ƒ๊ณผ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰์˜ ์ฆ๊ฑฐ์›€์„ ์ฃผ๋Š” ๊ธฐ์ˆ ๋กœ์จ, ์ „์ฐจ๋Ÿ‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค.In the last ten decades, vehicle stability control systems have been dramatically developed and adapted in many commercial vehicles to avoid fatal crashes. Significantly, ESC (Electric Stability Control) system can help escape the accident from unstable driving conditions with dangerous roads such as slippery roads due to inclement weather conditions. However, for the high performed vehicle, frequent intervention from ESC reduces the pleasure of fun-to-drive. Recently, the development of traction control technologies has been taking place with that of the electrification of vehicles. The IWMs (In-Wheel Motor system), which is one of the systems that can apply independent drive of each wheel, for the limit handling characteristics, which are the operation areas of the ESC, is introduced for the control that enables the lateral characteristics of the vehicle dynamics. Firstly, the automated drift control algorithm can be proposed for the nonlinear limit handling condition of vehicles. This approach can give an insight of fun-to-drive mode to TV (Torque Vector) control scheme, but also the stability control of high sideslip angle of the vehicle on slippery roads. Secondly, using IWMs system with front two motors, understeer gradient of vehicle, which is the unique characteristics of vehicle can be used for the proposed control strategy. A new transient parameter is formulated to be acquired rapid response of controller and reducing chattering effects. Simulation and vehicle tests are conducted for validation of TV control algorithm with steady-state and transient ISO-based tests. Finally, dynamic torque vectoring control with a four-wheel motor system with Multiple Adaptive Sliding Mode Control (MASMC) approach, which is composed of a yaw rate controller and sideslip angle controller, is introduced. Highly nonlinear characteristics, cornering stiffnesses of front and rear tires are estimated by adaptation law with measuring data. Consequently, there are two types of driving modes, the safety mode and the dynamic mode. MASMC algorithm can be found and validated by simulation in torque vectoring technology to improve the handling performance of fully electric vehicles.Chapter 1 Introduction 7 1.1. Background and Motivation 7 1.2. Literature review 11 1.3. Thesis Objectives 15 1.4. Thesis Outline 15 Chapter 2 Vehicle dynamic control at limit handling 17 2.1. Vehicle Model and Analysis 17 2.1.1. Lateral dynamics of vehicle 17 2.1.2. Longitudinal dynamics of vehicle 20 2.2. Tire Model 24 2.3. Analysis of vehicle drift for fun-to-drive 28 2.4. Designing A Controller for Automated Drift 34 2.4.1. Lateral controller 35 2.4.2. Longitudinal Controller 37 2.4.3. Stability Analysis 39 2.4.4. Validation with simulation and test 40 Chapter 3 Torque Vectoring Control with Front Two Motor In-Wheel Vehicles 47 3.1. Dynamic Torque Vectoring Control 48 3.1.1. In-wheel motor system (IWMs) 48 3.1.2. Dynamic system modeling 49 3.1.3. Designing controller 53 3.2. Validation with Simulation and Experiment 59 3.2.1. Simulation 59 3.2.2. Vehicle Experiment 64 Chapter 4 Dynamic handling control for Four-wheel Drive In-Wheel platform 75 4.1. Vehicle System Modeling 76 4.2. Motion Control based on MASMC 78 4.2.1. Yaw motion controller for the inner ASMC 80 4.2.2. Sideslip angle controller for the outer ASMC 84 4.3. Optimal Torque Distribution (OTD) 88 4.3.1. Constraints of dynamics 88 4.3.2. Optimal torque distribution law 90 4.4. Validation with Simulation 91 4.4.1. Simulation setup 91 4.4.2. Simulation results 92 Chapter 5 Conclusion and Future works 104 5.1 Conclusion 104 5.2 Future works 106 Bibliography 108 Abstract in Korean 114๋ฐ•

    A Real-time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles

    Get PDF
    This paper proposes a real-time nonlinear model predictive control (NMPC) strategy for direct yaw moment control (DYC) of distributed drive electric vehicles (DDEVs). The NMPC strategy is based on a control-oriented model built by integrating a single track vehicle model with the Magic Formula (MF) tire model. To mitigate the NMPC computational cost, the continuation/generalized minimal residual (C/GMRES) algorithm is employed and modified for real-time optimization. Since the traditional C/GMRES algorithm cannot directly solve the inequality constraint problem, the external penalty method is introduced to transform inequality constraints into an equivalently unconstrained optimization problem. Based on the Pontryaginโ€™s minimum principle (PMP), the existence and uniqueness for solution of the proposed C/GMRES algorithm are proven. Additionally, to achieve fast initialization in C/GMRES algorithm, the varying predictive duration is adopted so that the analytic expressions of optimally initial solutions in C/GMRES algorithm can be derived and gained. A Karush-Kuhn-Tucker (KKT) condition based control allocation method distributes the desired traction and yaw moment among four independent motors. Numerical simulations are carried out by combining CarSim and Matlab/Simulink to evaluate the effectiveness of the proposed strategy. Results demonstrate that the real-time NMPC strategy can achieve superior vehicle stability performance, guarantee the given safety constraints, and significantly reduce the computational efforts

    Vehicle Dynamic Control of 4 In-Wheel-Motor Drived Electric Vehicle

    Get PDF

    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle

    Get PDF
    This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with independent motors mounted in each wheel. The additional controllability and speed permitted using independent motors can be exploited to improve the handling and stability of electric vehicles. In this thesis, these improvements arise from employing a direct yaw moment control (DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized by a torque vectoring controller which generates an optimal torque distribution among the four wheels. The torque allocation at each instant is computed by finding a solution to an optimization problem using gradient descent, a well-known algorithm that seeks the minimum cost employing the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is proposed as the basis of the optimization problem, while the constraints come from the physical limitations of the motors and friction limits between the tires and road. The DYC system requires information about the tire forces in real-time, so this study presents a framework for estimating the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that must be measured or estimated but is outside the scope of this study. A comparative analysis of three different formulations of sliding mode control used for computation of the corrective yaw moment and an evaluation of how successfully they achieve neutral steer is presented. IPG Automotiveโ€™s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. A custom electric powertrain model was developed to enable any CarMaker vehicle to be reconfigured for independent control of the motors. This custom powertrain, called TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables for each of the four motors. The TVC_OpenXWD powertrain model and controller were designed in MATLAB and Simulink and exported as C code to run them as plug-ins in CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on each tire[CB1] . The control system performance is evaluated based on its ability to achieve neutral steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control employing a conventional switching function (CSMC), modified switching function (MSMC), and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in addition to the open loop system

    A Yaw Stability Control Algorithm for Four-Wheel Independently Actuated Electric Ground Vehicles considering Control Boundaries

    Get PDF
    A hierarchical control algorithm of direct yaw moment control for four-wheel independently actuated (FWIA) electric ground vehicles is presented. Sliding mode control is adopted to yield the desired yaw moment in the higher layer of the algorithm due to the possible modeling inaccuracies and parametric uncertainties. The conditional integrator approach is employed to overcome the chattering issue, which enables a smooth transition to a proportional + integral-like controller, with antiwindup, when the system is entering the boundary layer. The lower level of the algorithm is given to allocate the desired yaw moment to four wheels by means of slip ratio distribution and control for a better grasp of control boundaries. Simulation results, obtained with a vehicle dynamics simulator, Carsim, and the Matlab/Simulink, show the effectiveness of the control algorithm
    • โ€ฆ
    corecore