343 research outputs found

    Sliced Wasserstein Distance for Learning Gaussian Mixture Models

    Full text link
    Gaussian mixture models (GMM) are powerful parametric tools with many applications in machine learning and computer vision. Expectation maximization (EM) is the most popular algorithm for estimating the GMM parameters. However, EM guarantees only convergence to a stationary point of the log-likelihood function, which could be arbitrarily worse than the optimal solution. Inspired by the relationship between the negative log-likelihood function and the Kullback-Leibler (KL) divergence, we propose an alternative formulation for estimating the GMM parameters using the sliced Wasserstein distance, which gives rise to a new algorithm. Specifically, we propose minimizing the sliced-Wasserstein distance between the mixture model and the data distribution with respect to the GMM parameters. In contrast to the KL-divergence, the energy landscape for the sliced-Wasserstein distance is more well-behaved and therefore more suitable for a stochastic gradient descent scheme to obtain the optimal GMM parameters. We show that our formulation results in parameter estimates that are more robust to random initializations and demonstrate that it can estimate high-dimensional data distributions more faithfully than the EM algorithm

    Max-Sliced Wasserstein Distance and its use for GANs

    Full text link
    Generative adversarial nets (GANs) and variational auto-encoders have significantly improved our distribution modeling capabilities, showing promise for dataset augmentation, image-to-image translation and feature learning. However, to model high-dimensional distributions, sequential training and stacked architectures are common, increasing the number of tunable hyper-parameters as well as the training time. Nonetheless, the sample complexity of the distance metrics remains one of the factors affecting GAN training. We first show that the recently proposed sliced Wasserstein distance has compelling sample complexity properties when compared to the Wasserstein distance. To further improve the sliced Wasserstein distance we then analyze its `projection complexity' and develop the max-sliced Wasserstein distance which enjoys compelling sample complexity while reducing projection complexity, albeit necessitating a max estimation. We finally illustrate that the proposed distance trains GANs on high-dimensional images up to a resolution of 256x256 easily.Comment: Accepted to CVPR 201

    Solving general elliptical mixture models through an approximate Wasserstein manifold

    Full text link
    We address the estimation problem for general finite mixture models, with a particular focus on the elliptical mixture models (EMMs). Compared to the widely adopted Kullback-Leibler divergence, we show that the Wasserstein distance provides a more desirable optimisation space. We thus provide a stable solution to the EMMs that is both robust to initialisations and reaches a superior optimum by adaptively optimising along a manifold of an approximate Wasserstein distance. To this end, we first provide a unifying account of computable and identifiable EMMs, which serves as a basis to rigorously address the underpinning optimisation problem. Due to a probability constraint, solving this problem is extremely cumbersome and unstable, especially under the Wasserstein distance. To relieve this issue, we introduce an efficient optimisation method on a statistical manifold defined under an approximate Wasserstein distance, which allows for explicit metrics and computable operations, thus significantly stabilising and improving the EMM estimation. We further propose an adaptive method to accelerate the convergence. Experimental results demonstrate the excellent performance of the proposed EMM solver.Comment: This work has been accepted to AAAI2020. Note that this version also corrects a small error on the Equation (16) in proo
    • …
    corecore