365 research outputs found

    A regional solar forecasting approach using generative adversarial networks with solar irradiance maps

    Get PDF
    The intermittent and stochastic nature of solar resource hinders the integration of solar energy into modern power system. Solar forecasting has become an important tool for better photovoltaic (PV) power integration, effective market design, and reliable grid operation. Nevertheless, most existing solar forecasting methods are dedicated to improving forecasting accuracy at site-level (e.g. for individual PV power plants) regardless of the impacts caused by the accumulated penetration of distributed PV systems. To tackle with this issue, this article proposes a novel generative approach for regional solar forecasting considering an entire geographical region of a flexible spatial scale. Specifically, we create solar irradiance maps (SIMs) for solar forecasting for the first time by using spatial Kriging interpolation with satellite-derived solar irradiance data. The sequential SIMs provide a comprehensive view of how solar intensity varies over time and are further used as the inputs for a multi-scale generative adversarial network (GAN) to predict the next-step SIMs. The generated SIM frames can be further transformed into PV power output through a irradiance-to-power model. A case study is conducted in a 24 × 24 km area of Brisbane to validate the proposed method by predicting of both solar irradiance and the output of behind-the-meter (BTM) PV systems at unobserved locations. The approach demonstrates comparable accuracy in terms of solar irradiance forecasting and better predictions in PV power generation compared to the conventional forecasting models with a highest average forecasting skill of 10.93±2.35% for all BTM PV systems. Thus, it can be potentially used to assist solar energy assessment and power system control in a highly-penetrated region

    Cloud Segmentation and Classification from All-Sky Images Using Deep Learning

    Get PDF
    For transforming the energy sector towards renewable energies, solar power is regarded as one of the major resources. However, it is not uniformly available all the time, leading to fluctuations in power generation. Clouds have the highest impact on short-term temporal and spatial variability. Thus, forecasting solar irradiance strongly depends on current cloudiness conditions. As the share of solar energy in the electrical grid is increasing, so-called nowcasts (intra-minute to intra-hour forecasts) are beneficial for grid control and for reducing required storage capacities. Furthermore, the operation of concentrating solar power (CSP) plants can be optimized with high resolution spatial solar irradiance data. A common nowcast approach is to analyze ground-based sky images from All-Sky Imagers. Clouds within these images are detected and tracked to estimate current and immediate future irradiance, whereas the accuracy of these forecasts depends primarily on the quality of pixel-level cloud recognition. State-of-the-art methods are commonly restricted to binary segmentation, distinguishing between cloudy and cloudless pixels. Thereby the optical properties of different cloud types are ignored. Also, most techniques rely on threshold-based detection showing difficulties under certain atmospheric conditions. In this thesis, two deep learning approaches are presented to automatically determine cloud conditions. To identify cloudiness characteristics like a free sun disk, a multi-label classifier was implemented assigning respective labels to images. In addition, a segmentation model was developed, classifying images pixel-wise into three cloud types and cloud-free sky. For supervised training, a new dataset of 770 images was created containing ground truth labels and segmentation masks. Moreover, to take advantage of large amounts of raw data, self-supervised pretraining was applied. By defining suitable pretext tasks, representations of image data can be learned facilitating the distinction of cloud types. Two successful techniques were chosen for self-supervised learning: Inpainting- uperresolution and DeepCluster. Afterwards, the pretrained models were fine-tuned on the annotated dataset. To assess the effectiveness of self-supervision, a comparison with random initialization and pretrained ImageNet weights was conducted. Evaluation shows that segmentation in particular benefits from self-supervised learning, improving accuracy and IoU about 3% points compared to ImageNet pretraining. The best segmentation model was also evaluated on binary segmentation. Achieving an overall accuracy of 95.15%, a state-of-the art Clear-Sky-Library (CSL) is outperformed significantly by over 7% points

    Deep Dynamic Cloud Lighting

    Full text link
    Sky illumination is a core source of lighting in rendering, and a substantial amount of work has been developed to simulate lighting from clear skies. However, in reality, clouds substantially alter the appearance of the sky and subsequently change the scene's illumination. While there have been recent advances in developing sky models which include clouds, these all neglect cloud movement which is a crucial component of cloudy sky appearance. In any sort of video or interactive environment, it can be expected that clouds will move, sometimes quite substantially in a short period of time. Our work proposes a solution to this which enables whole-sky dynamic cloud synthesis for the first time. We achieve this by proposing a multi-timescale sky appearance model which learns to predict the sky illumination over various timescales, and can be used to add dynamism to previous static, cloudy sky lighting approaches.Comment: Project page: https://pinarsatilmis.github.io/DDC

    A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data using Self-Supervised Learning

    Get PDF
    ABSTRACT Solar energy is now the cheapest form of electricity in history. Unfortunately, signi.cantly increasing the electric grid’s fraction of solar energy remains challenging due to its variability, which makes balancing electricity’s supply and demand more di.cult. While thermal generators’ ramp rate—the maximum rate at which they can change their energy generation—is .nite, solar energy’s ramp rate is essentially in.nite. Thus, accurate near-term solar forecasting, or nowcasting, is important to provide advance warnings to adjust thermal generator output in response to variations in solar generation to ensure a balanced supply and demand. To address the problem, this paper develops a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning. Speci.cally, we develop deep auto-regressive models using convolutional neural networks (CNN) and long short-term memory networks (LSTM) that are globally trained across multiple locations to predict raw future observations of the spatio-temporal spectral data collected by the recently launched GOES-R series of satellites. Our model estimates a location’s near-term future solar irradiance based on satellite observations, which we feed to a regression model trained on smaller site-speci.c solar data to provide near-term solar photovoltaic (PV) forecasts that account for site-speci.c characteristics. We evaluate our approach for di.erent coverage areas and forecast horizons across 25 solar sites and show that it yields errors close to that of a model using ground-truth observations

    Extending intraday solar forecast horizons with deep generative models

    Full text link
    Surface solar irradiance (SSI) plays a crucial role in tackling climate change - as an abundant, non-fossil energy source, exploited primarily via photovoltaic (PV) energy production. With the growing contribution of SSI to total energy production, the stability of the latter is challenged by the intermittent character of the former, arising primarily from cloud effects. Mitigating this stability challenge requires accurate, uncertainty-aware, near real-time, regional-scale SSI forecasts with lead times of minutes to a few hours, enabling robust real-time energy grid management. State-of-the-art nowcasting methods typically meet only some of these requirements. Here we present SHADECast, a deep generative diffusion model for the probabilistic spatiotemporal nowcasting of SSI, conditioned on deterministic aspects of cloud evolution to guide the probabilistic ensemble forecast, and based on near real-time satellite data. We demonstrate that SHADECast provides improved forecast quality, reliability, and accuracy in different weather scenarios. Our model produces realistic and spatiotemporally consistent predictions outperforming the state of the art by 15% in the continuous ranked probability score (CRPS) over different regions up to 512 km x 512 km with lead times of 15-120 min. Conditioning the ensemble generation on deterministic forecasts improves reliability and performance by more than 7% on CRPS. Our approach empowers grid operators and energy traders to make informed decisions, ensuring stability and facilitating the seamless integration of PV energy across multiple locations simultaneously

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events

    AI-generated Content for Various Data Modalities: A Survey

    Full text link
    AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions
    • …
    corecore