5,610 research outputs found
Skolem Functions for Factored Formulas
Given a propositional formula F(x,y), a Skolem function for x is a function
\Psi(y), such that substituting \Psi(y) for x in F gives a formula semantically
equivalent to \exists F. Automatically generating Skolem functions is of
significant interest in several applications including certified QBF solving,
finding strategies of players in games, synthesising circuits and bit-vector
programs from specifications, disjunctive decomposition of sequential circuits
etc. In many such applications, F is given as a conjunction of factors, each of
which depends on a small subset of variables. Existing algorithms for Skolem
function generation ignore any such factored form and treat F as a monolithic
function. This presents scalability hurdles in medium to large problem
instances. In this paper, we argue that exploiting the factored form of F can
give significant performance improvements in practice when computing Skolem
functions. We present a new CEGAR style algorithm for generating Skolem
functions from factored propositional formulas. In contrast to earlier work,
our algorithm neither requires a proof of QBF satisfiability nor uses
composition of monolithic conjunctions of factors. We show experimentally that
our algorithm generates smaller Skolem functions and outperforms
state-of-the-art approaches on several large benchmarks.Comment: Full version of FMCAD 2015 conference publicatio
Near-Optimal Complexity Bounds for Fragments of the Skolem Problem
Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial).
In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds
Langford sequences and a product of digraphs
Skolem and Langford sequences and their many generalizations have
applications in numerous areas. The -product is a generalization of
the direct product of digraphs. In this paper we use the -product
and super edge-magic digraphs to construct an exponential number of Langford
sequences with certain order and defect. We also apply this procedure to
extended Skolem sequences.Comment: 10 pages, 6 figures, to appear in European Journal of Combinatoric
Learning-Based Synthesis of Safety Controllers
We propose a machine learning framework to synthesize reactive controllers
for systems whose interactions with their adversarial environment are modeled
by infinite-duration, two-player games over (potentially) infinite graphs. Our
framework targets safety games with infinitely many vertices, but it is also
applicable to safety games over finite graphs whose size is too prohibitive for
conventional synthesis techniques. The learning takes place in a feedback loop
between a teacher component, which can reason symbolically about the safety
game, and a learning algorithm, which successively learns an overapproximation
of the winning region from various kinds of examples provided by the teacher.
We develop a novel decision tree learning algorithm for this setting and show
that our algorithm is guaranteed to converge to a reactive safety controller if
a suitable overapproximation of the winning region can be expressed as a
decision tree. Finally, we empirically compare the performance of a prototype
implementation to existing approaches, which are based on constraint solving
and automata learning, respectively
Towards Synthesis from Assume-Guarantee Contracts involving Infinite Theories: A Preliminary Report
In previous work, we have introduced a contract-based real- izability
checking algorithm for assume-guarantee contracts involving infinite theories,
such as linear integer/real arith- metic and uninterpreted functions over
infinite domains. This algorithm can determine whether or not it is possible to
con- struct a realization (i.e. an implementation) of an assume- guarantee
contract. The algorithm is similar to k-induction model checking, but involves
the use of quantifiers to deter- mine implementability. While our work on
realizability is inherently useful for vir- tual integration in determining
whether it is possible for sup- pliers to build software that meets a contract,
it also provides the foundations to solving the more challenging problem of
component synthesis. In this paper, we provide an initial synthesis algorithm
for assume-guarantee contracts involv- ing infinite theories. To do so, we take
advantage of our realizability checking procedure and a skolemization solver
for forall-exists formulas, called AE-VAL. We show that it is possible to
immediately adapt our existing algorithm towards syn- thesis by using this
solver, using a demonstration example. We then discuss challenges towards
creating a more robust synthesis algorithm.Comment: 6 pages, 1 figur
Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic
We present a new syntactical proof that first-order Peano Arithmetic with
Skolem axioms is conservative over Peano Arithmetic alone for arithmetical
formulas. This result - which shows that the Excluded Middle principle can be
used to eliminate Skolem functions - has been previously proved by other
techniques, among them the epsilon substitution method and forcing. In our
proof, we employ Interactive Realizability, a computational semantics for Peano
Arithmetic which extends Kreisel's modified realizability to the classical
case.Comment: In Proceedings CL&C 2012, arXiv:1210.289
Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation
Existential rules have been proposed for representing ontological knowledge,
specifically in the context of Ontology- Based Data Access. Entailment with
existential rules is undecidable. We focus in this paper on conditions that
ensure the termination of a breadth-first forward chaining algorithm known as
the chase. Several variants of the chase have been proposed. In the first part
of this paper, we propose a new tool that allows to extend existing acyclicity
conditions ensuring chase termination, while keeping good complexity
properties. In the second part, we study the extension to existential rules
with nonmonotonic negation under stable model semantics, discuss the relevancy
of the chase variants for these rules and further extend acyclicity results
obtained in the positive case.Comment: This paper appears in the Proceedings of the 15th International
Workshop on Non-Monotonic Reasoning (NMR 2014
- …
