6,376 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.

    Get PDF
    Engineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform

    Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

    Get PDF
    A quadrangulation is a graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. All quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path P_2 of length 2. We define the degree D of a splitting S and consider restricted splittings S_{i,j} with i <= D <= j. It is known that S_{2,3} generate all simple quadrangulations. Here we investigate the cases S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}. First we show that the splittings S_{1,2} are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor. Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The topology of the equilibria corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u identify the primary equilibrium class associated with the body by V\'arkonyi and Domokos. We show that both S_{1,1} and S_{2,2} generate all primary classes from a finite set of ancestors which is closely related to their geometric results. If, beyond s and u, the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, L\'angi and Szab\'o showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that S_{1,2} can only generate a limited range of secondary classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present computational results on the number of secondary classes and multiquadrangulations.Comment: 21 pages, 11 figures and 3 table
    • …
    corecore