94 research outputs found

    Iris Biometric Watermarking for Authentication Using Multiband Discrete Wavelet Transform and Singular-Value Decomposition

    Get PDF
    The most advanced technology, watermarking enables intruders to access the database. Various techniques have been developed for information security. Watermarks and histories are linked to many biometric techniques such as fingerprints, palm positions, gait, iris and speech are recommended. Digital watermarking is the utmost successful approaches among the methods available. In this paper the multiband wavelet transforms and singular value decomposition are discussed to establish a watermarking strategy rather than biometric information. The use of biometrics instead of conservative watermarks can enhance information protection. The biometric technology being used is iris. The iris template can be viewed as a watermark, while an iris mode of communication may be used to help information security with the addition of a watermark to the image of the iris. The research involves verifying authentication against different attacks such as no attacks, Jpeg Compression, Gaussian, Median Filtering and Blurring. The Algorithm increases durability and resilience when exposed to geometric and frequency attacks. Finally, the proposed framework can be applied not only to the assessment of iris biometrics, but also to other areas where privacy is critical

    Security of Biometric Data Using Compressed Watermarking Technique

    Get PDF
    This paper has focus on biometric data security over open communication channel of biometric system. Here biometric data is encoded using cs theory and wavelet based embedding technique. The biometric data is convert into encoded sparse measurements which is generating using SVD, random seed and uniform quantization process. Then these encoded sparse measurements are embedding into the host color biometric data using wavelet based watermarking technique. This proposed technique has explored dimension reduction and computational security provided by compressive sensing. This proposed technique has also helps to compressed and to send secret data over noisy communication channel of biometric system against various attacks. The proposed technique provides more security compare to existed technique in literature due to CS theory. The novelty of proposed technique is that, watermark iris image information is compressed and encoded using CS theory and uniform quantization.DOI:http://dx.doi.org/10.11591/ijece.v4i5.664

    Comparison of DCT, SVD and BFOA based multimodal biometric watermarking systems

    Get PDF
    AbstractDigital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT), Singular Value Decomposition (SVD) and Bacterial Foraging Optimization Algorithm (BFOA) are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA) watermarking technique

    Intensifying the Security of Multiomodal Biometric Authentication System using Watermarking

    Get PDF
    In Multimodal biometrics system two or more biometric attributes are combined which makes it far more secure than unimodal system as it nullifies all the vulnerabilities of it. But with the prompt ontogenesis of information technology, even the biometric data is not secure. There is one such technique that is implemented to secure the biometric data from inadvertent or deliberate attacks is known as Digital watermarking. This paper postulate an approach that is devise in both the directions of enlarging the security through watermarking technique and improving the efficiency of biometric identification system by going multimodal. Three biometric traits are consider in this paper two of them are physical traits i.e. ; face, fingerprint and one is behavioral trait (signature).The biometric traits are initially metamorphose using Discrete Wavelet and Discrete Cosine Transformation and then watermarked using Singular Value Decomposition. Scheme depiction and presented results rationalize the effectiveness of the scheme

    Biometric Fusion and Recognition

    Get PDF
    Biometric is the science and technology of measuring and analyzing biological data of human body, extracting a feature set from the acquired data and comparing this set against the template set in the database. In this paper, Recognition through fusion of face and iris biometric images based on wavelet features and Kernel Fisher Discriminant Analysis (KFDA) is developed. Discrete Wavelet Transform (DWT) of face and iris image is used to reduce the dimensions which help to prevent from requirement of storage space of database. Nearest Neighbour classifier is selected to assign class to its nearest neighbour. Then, nonlinear original input space can be converted through a nonlinear map function into a linear high-dimensional feature space with the use of KFDA

    Parametric Evaluation of Fused Image

    Get PDF
    This paper is used to implement feature level fusion for the extracted images of the different biometric features. The biometric features used here are face and iris. SVD is a fusion technology based on Singular Valued Decomposition method applied at feature level for recognise pattern. There are many objective methods to check the quality of fused image like Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Normalized Cross-Correlation (NCC) and Normalized Absolute Error (NAC). Self created face database and CASIA iris database is used for experimental results. The simulation process is done by MATLAB 7.

    SECURING BIOMETRIC DATA

    Get PDF

    SECURING BIOMETRIC DATA

    Get PDF
    corecore