61,137 research outputs found

    Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials

    Full text link
    In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center. Based on the method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Then, we consider the symmetric singular points and present the conditions for one of them to be elementary center or nilpotent center. Under the condition for the singular point to be a center, we obtain the normal form of the Hamiltonian systems near the center. Moreover, perturbing the symmetric cubic Hamiltonian systems by cubic polynomials, we consider limit cycles bifurcating from the center using the algorithm to compute the coefficients of Melnikov function. Finally, perturbing the symmetric hamiltonian system by symmetric cubic polynomials, we consider the number of limit cycles near one of the symmetric centers of the symmetric near-Hamiltonian system, which is same to that of another center

    Wavelets operational methods for fractional differential equations and systems of fractional differential equations

    Get PDF
    In this thesis, new and effective operational methods based on polynomials and wavelets for the solutions of FDEs and systems of FDEs are developed. In particular we study one of the important polynomial that belongs to the Appell family of polynomials, namely, Genocchi polynomial. This polynomial has certain great advantages based on which an effective and simple operational matrix of derivative was first derived and applied together with collocation method to solve some singular second order differential equations of Emden-Fowler type, a class of generalized Pantograph equations and Delay differential systems. A new operational matrix of fractional order derivative and integration based on this polynomial was also developed and used together with collocation method to solve FDEs, systems of FDEs and fractional order delay differential equations. Error bound for some of the considered problems is also shown and proved. Further, a wavelet bases based on Genocchi polynomials is also constructed, its operational matrix of fractional order derivative is derived and used for the solutions of FDEs and systems of FDEs. A novel approach for obtaining operational matrices of fractional derivative based on Legendre and Chebyshev wavelets is developed, where, the wavelets are first transformed into corresponding shifted polynomials and the transformation matrices are formed and used together with the polynomials operational matrices of fractional derivatives to obtain the wavelets operational matrix. These new operational matrices are used together with spectral Tau and collocation methods to solve FDEs and systems of FDEs

    Improving Bertini 2.0: Classifying Singular Polynomials with Machine Learning

    Get PDF
    The purpose of this research is to decrease the run time of Bertini, a program that approximates solutions of polynomial systems. Bertini can be run more efficiently if it is known whether a polynomial is singular or non-singular. In this research, we focus on polynomials in one variable. We use a machine learning algorithm to classify polynomials into these two categories. To do so, we create and use a set of polynomials to train a neural network and create a model. Then, we create and use a test set to assess the accuracy of the model. By changing the hyper-parameters of the system and by changing the functions used in the system, the accuracy of the model is able to be increased
    • …
    corecore