542 research outputs found

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    A meshless, integration-free, and boundary-only RBF technique

    Get PDF
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity method (DRM), this paper presents an inherently meshless, integration-free, boundary-only RBF collocation techniques for numerical solution of various partial differential equation systems. The basic ideas behind this methodology are very mathematically simple. In this study, the RBFs are employed to approximate the inhomogeneous terms via the DRM, while non-singular general solution leads to a boundary-only RBF formulation for homogenous solution. The present scheme is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of nonsingular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no require the artificial boundary and results in the symmetric system equations under certain conditions. The efficiency and utility of this new technique are validated through a number of typical numerical examples. Completeness concern of the BKM due to the only use of non-singular part of complete fundamental solution is also discussed

    The Friedmann-Lemaitre-Robertson-Walker Big Bang singularities are well behaved

    Full text link
    We show that the Big Bang singularity of the Friedmann-Lemaitre-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.Comment: 10 pages, 5 figure

    Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type

    Get PDF
    The two-dimensional Hamiltonian system (*)  y'(x)=zJH(x)y(x),  x∈(a,b), where the Hamiltonian H takes non-negative 2x2-matrices as values, and J:=(0110)J:= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, has attracted a lot of interest over the past decades.  Special emphasis has been put on operator models and direct and inverse spectral theorems.  Weyl theory plays a prominent role in the spectral theory of the equation, relating the class of all equations (*) to the class N0 of all Nevanlinna functions via the construction of Titchmarsh–Weyl coefficients. In connection with the study of singular potentials, an indefinite (Pontryagin space) analogue of equation (*) was proposed, where the 'general Hamiltonian' is allowed to have a finite number of inner singularities. Direct and inverse spectral theorems, relating the class of all general Hamiltonians to the class <N∞ of all generalized Nevanlinna functions, were established. In the present paper, we investigate the spectral theory of general Hamiltonians having a particular form, namely, such which have only one singularity and the interval to the left of this singularity is a so-called indivisible interval.  Our results can comprehensively be formulated as follows. — We prove direct and inverse spectral theorems for this class, i.e. we establish an intrinsic characterization of the totality of all Titchmarsh–Weyl coefficients corresponding to general Hamiltonians of the considered form. —  We determine the asymptotic growth of the fundamental solution when approaching the singularity. —  We show that each solution of the equation has 'polynomially regularized' boundary values at the singularity. Besides the intrinsic interest and depth of the presented results, our motivation is drawn from forthcoming applications: the present theorems form the core for our study of Sturm–Liouville equations with two singular endpoints and our further study of the structure theory of general Hamiltonians (both to be presented elsewhere)

    What Do Propositions explain? Inflationary vs deflationary perspectives and the case of singular propositions

    Full text link
    In this paper we take up the question of the explanatory signifcance of the notion of propositional content. Our frst goal is to disentangle two types of approach: According to what we call infationism, propositions should be taken seriously enough to expect explanatory payofs from them. The alternative defationary rejects this claim. Our second goal is to explore the infationism vs. defationism contrast in depth by focusing on the distinction between singular and general propositions. We argue that infationism fails and outline a variety of defationism that ofers the best prospects for explaining the singular/general divide
    corecore