716 research outputs found

    Use Generalized Representations, But Do Not Forget Surface Features

    Get PDF
    Only a year ago, all state-of-the-art coreference resolvers were using an extensive amount of surface features. Recently, there was a paradigm shift towards using word embeddings and deep neural networks, where the use of surface features is very limited. In this paper, we show that a simple SVM model with surface features outperforms more complex neural models for detecting anaphoric mentions. Our analysis suggests that using generalized representations and surface features have different strength that should be both taken into account for improving coreference resolution.Comment: CORBON workshop@EACL 201

    SMDDH: Singleton Mention detection using Deep Learning in Hindi Text

    Full text link
    Mention detection is an important component of coreference resolution system, where mentions such as name, nominal, and pronominals are identified. These mentions can be purely coreferential mentions or singleton mentions (non-coreferential mentions). Coreferential mentions are those mentions in a text that refer to the same entities in a real world. Whereas, singleton mentions are mentioned only once in the text and do not participate in the coreference as they are not mentioned again in the following text. Filtering of these singleton mentions can substantially improve the performance of a coreference resolution process. This paper proposes a singleton mention detection module based on a fully connected network and a Convolutional neural network for Hindi text. This model utilizes a few hand-crafted features and context information, and word embedding for words. The coreference annotated Hindi dataset comprising of 3.6K sentences, and 78K tokens are used for the task. In terms of Precision, Recall, and F-measure, the experimental findings obtained are excellent

    End-to-end Neural Coreference Resolution

    Full text link
    We introduce the first end-to-end coreference resolution model and show that it significantly outperforms all previous work without using a syntactic parser or hand-engineered mention detector. The key idea is to directly consider all spans in a document as potential mentions and learn distributions over possible antecedents for each. The model computes span embeddings that combine context-dependent boundary representations with a head-finding attention mechanism. It is trained to maximize the marginal likelihood of gold antecedent spans from coreference clusters and is factored to enable aggressive pruning of potential mentions. Experiments demonstrate state-of-the-art performance, with a gain of 1.5 F1 on the OntoNotes benchmark and by 3.1 F1 using a 5-model ensemble, despite the fact that this is the first approach to be successfully trained with no external resources.Comment: Accepted to EMNLP 201

    Neural Mention Detection

    Get PDF
    Mention detection is an important preprocessing step for annotation and interpretation in applications such as NER and coreference resolution, but few stand-alone neural models have been proposed able to handle the full range of mentions. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state of the art coreference resolution system; the second uses ELMO embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieves gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL coreference annotation setting. The same model achieves improvements of up to 5.3 and 6.2 p.p. when compared with the best-reported mention detection F1 on the CONLL and CRAC coreference data sets respectively in a HIGH F1 annotation setting. We then evaluate our models for coreference resolution by using mentions predicted by our best model in start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with our strong baseline systems (pipeline system and end-to-end system) respectively. For nested NER, the evaluation of our model on the GENIA corpora shows that our model matches or outperforms state-of-the-art models despite not being specifically designed for this task
    • …
    corecore