138,344 research outputs found

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    Pose Induction for Novel Object Categories

    Full text link
    We address the task of predicting pose for objects of unannotated object categories from a small seed set of annotated object classes. We present a generalized classifier that can reliably induce pose given a single instance of a novel category. In case of availability of a large collection of novel instances, our approach then jointly reasons over all instances to improve the initial estimates. We empirically validate the various components of our algorithm and quantitatively show that our method produces reliable pose estimates. We also show qualitative results on a diverse set of classes and further demonstrate the applicability of our system for learning shape models of novel object classes

    A Meta-Learning Approach to One-Step Active Learning

    Full text link
    We consider the problem of learning when obtaining the training labels is costly, which is usually tackled in the literature using active-learning techniques. These approaches provide strategies to choose the examples to label before or during training. These strategies are usually based on heuristics or even theoretical measures, but are not learned as they are directly used during training. We design a model which aims at \textit{learning active-learning strategies} using a meta-learning setting. More specifically, we consider a pool-based setting, where the system observes all the examples of the dataset of a problem and has to choose the subset of examples to label in a single shot. Experiments show encouraging results
    corecore