4,387 research outputs found

    Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks

    Full text link
    In this paper, we explore the physical-layer security in cooperative wireless networks with multiple relays where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. We propose the AF and DF based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the wireless security against eavesdropping attack. For the purpose of comparison, we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and TDFbORS, respectively. We also investigate a so-called multiple relay combining (MRC) framework and present the traditional AF and DF based MRC schemes, called T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the source signal to destination which then combines its received signals from the multiple relays. We derive closed-form intercept probability expressions of the proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of eavesdropping attack. We further conduct an asymptotic intercept probability analysis to evaluate the diversity order performance of relay selection schemes and show that no matter which relaying protocol is considered (i.e., AF and DF), the traditional and proposed optimal relay selection approaches both achieve the diversity order M where M represents the number of relays. In addition, numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.Comment: 13 page

    Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

    Full text link
    Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM-tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency flat fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise-ratio (SNR) when properly selected baseband waveforms are employed

    Adaptive Relay-Selection In Decode-And-Forward Cooperative Systems

    Get PDF
    In the past few years adaptive decode-and-forward cooperative diversity systems have been studied intensively in literature. Many schemes and protocols have been proposed to enhance the performance of the cooperative systems while trying to alleviate its drawbacks. One of the recent schemes that had been shown to give high improvements in performance is the best-relay selection scheme. In the best-relay selection scheme only one relaying nodes among the relays available in the system is selected to forward the source\u27s message to the destination. The best relay is selected as the relay node that can achieve the highest end-to-end signal-to-noise ratio (snr) at the destination node. Performance improvements have been reported as compared to regular fixed decode-and-forward relaying in which all relays are required to forward the source\u27s message to the destination in terms of spectral efficiency and diversity order. In this thesis, we use simulations to show the improvement in the outage performance of the best-relay selection scheme
    • …
    corecore