457 research outputs found

    Single Parameter Combinatorial Auctions with Partially Public Valuations

    Full text link
    We consider the problem of designing truthful auctions, when the bidders' valuations have a public and a private component. In particular, we consider combinatorial auctions where the valuation of an agent ii for a set SS of items can be expressed as vif(S)v_if(S), where viv_i is a private single parameter of the agent, and the function ff is publicly known. Our motivation behind studying this problem is two-fold: (a) Such valuation functions arise naturally in the case of ad-slots in broadcast media such as Television and Radio. For an ad shown in a set SS of ad-slots, f(S)f(S) is, say, the number of {\em unique} viewers reached by the ad, and viv_i is the valuation per-unique-viewer. (b) From a theoretical point of view, this factorization of the valuation function simplifies the bidding language, and renders the combinatorial auction more amenable to better approximation factors. We present a general technique, based on maximal-in-range mechanisms, that converts any α\alpha-approximation non-truthful algorithm (α1\alpha \leq 1) for this problem into Ω(αlogn)\Omega(\frac{\alpha}{\log{n}}) and Ω(α)\Omega(\alpha)-approximate truthful mechanisms which run in polynomial time and quasi-polynomial time, respectively

    Constrained Signaling in Auction Design

    Full text link
    We consider the problem of an auctioneer who faces the task of selling a good (drawn from a known distribution) to a set of buyers, when the auctioneer does not have the capacity to describe to the buyers the exact identity of the good that he is selling. Instead, he must come up with a constrained signalling scheme: a (non injective) mapping from goods to signals, that satisfies the constraints of his setting. For example, the auctioneer may be able to communicate only a bounded length message for each good, or he might be legally constrained in how he can advertise the item being sold. Each candidate signaling scheme induces an incomplete-information game among the buyers, and the goal of the auctioneer is to choose the signaling scheme and accompanying auction format that optimizes welfare. In this paper, we use techniques from submodular function maximization and no-regret learning to give algorithms for computing constrained signaling schemes for a variety of constrained signaling problems

    Public projects, Boolean functions and the borders of Border's theorem

    Full text link
    Border's theorem gives an intuitive linear characterization of the feasible interim allocation rules of a Bayesian single-item environment, and it has several applications in economic and algorithmic mechanism design. All known generalizations of Border's theorem either restrict attention to relatively simple settings, or resort to approximation. This paper identifies a complexity-theoretic barrier that indicates, assuming standard complexity class separations, that Border's theorem cannot be extended significantly beyond the state-of-the-art. We also identify a surprisingly tight connection between Myerson's optimal auction theory, when applied to public project settings, and some fundamental results in the analysis of Boolean functions.Comment: Accepted to ACM EC 201

    Truthful approximation mechanisms for restricted combinatorial auctions

    Get PDF
    When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCG-like payment rules will not ensure truthfulness). We develop a set of techniques that allow constructing efficiently computable truthful mechanisms for combinatorial auctions in the special case where each bidder desires a specific known subset of items and only the valuation is unknown by the mechanism (the single parameter case). For this case we extend the work of Lehmann, O'Callaghan, and Shoham, who presented greedy heuristics. We show how to use If-Then-Else constructs, perform a partial search, and use the LP relaxation. We apply these techniques for several canonical types of combinatorial auctions, obtaining truthful mechanisms with provable approximation ratios

    05011 Abstracts Collection -- Computing and Markets

    Get PDF
    From 03.01.05 to 07.01.05, the Dagstuhl Seminar 05011``Computing and Markets\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Composable and Efficient Mechanisms

    Full text link
    We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple different mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome in equilibrium both in the full information setting and in the Bayesian setting with uncertainty about participants, as well as in learning outcomes. Our main result is to show that such mechanisms compose well: smoothness locally at each mechanism implies efficiency globally. For mechanisms where good performance requires that bidders do not bid above their value, we identify the notion of a weakly smooth mechanism. Weakly smooth mechanisms, such as the Vickrey auction, are approximately efficient under the no-overbidding assumption. Similar to smooth mechanisms, weakly smooth mechanisms behave well in composition, and have high quality outcome in equilibrium (assuming no overbidding) both in the full information setting and in the Bayesian setting, as well as in learning outcomes. In most of the paper we assume participants have quasi-linear valuations. We also extend some of our results to settings where participants have budget constraints

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Characterizing Optimal Adword Auctions

    Full text link
    We present a number of models for the adword auctions used for pricing advertising slots on search engines such as Google, Yahoo! etc. We begin with a general problem formulation which allows the privately known valuation per click to be a function of both the identity of the advertiser and the slot. We present a compact characterization of the set of all deterministic incentive compatible direct mechanisms for this model. This new characterization allows us to conclude that there are incentive compatible mechanisms for this auction with a multi-dimensional type-space that are {\em not} affine maximizers. Next, we discuss two interesting special cases: slot independent valuation and slot independent valuation up to a privately known slot and zero thereafter. For both of these special cases, we characterize revenue maximizing and efficiency maximizing mechanisms and show that these mechanisms can be computed with a worst case computational complexity O(n2m2)O(n^2m^2) and O(n2m3)O(n^2m^3) respectively, where nn is number of bidders and mm is number of slots. Next, we characterize optimal rank based allocation rules and propose a new mechanism that we call the customized rank based allocation. We report the results of a numerical study that compare the revenue and efficiency of the proposed mechanisms. The numerical results suggest that customized rank-based allocation rule is significantly superior to the rank-based allocation rules.Comment: 29 pages, work was presented at a) Second Workshop on Sponsored Search Auctions, Ann Arbor, MI b) INFORMS Annual Meeting, Pittsburgh c) Decision Sciences Seminar, Fuqua School of Business, Duke Universit
    corecore