6 research outputs found

    Empowering the blind: contactless activity recognition with commodity software-defined radio and ultra-high-frequency radio frequency identification

    Get PDF
    his study presents a novel computational radio frequency identification (RFID) system designed specifically for assisting blind individuals, utilising software-defined radio (SDR) with coherent detection. The system employs battery-less ultra-high-frequency (UHF) tag arrays in Gen2 RFID systems, enhancing the transmission of sensed information beyond standard identification bits. Our method uses an SDR reader to efficiently manage multiple tags with Gen2 preambles implemented on a single transceiver card. The results highlight the system’s real-time capability to detect movements and direction of walking within a four-meter range, indicating significant advances in contactless activity monitoring. This system not only handles the complexities of multiple tag scenarios but also delineates the influence of system parameters on RFID operational efficiency. This study contributes to assistive technology, provides a platform for future advancements aimed at addressing contemporary limitations in pseudo-localisation, and offers a practical, affordable assistance system for blind individuals

    Single-antenna coherent detection of collided FM0 RFID signals

    No full text
    Δημοσίευση σε επιστημονικό περιοδικόSummarization: This work derives and evaluates single-antenna detection schemes for collided radio frequency identification (RFID) signals, i.e. simultaneous transmission of two RFID tags, following FM0 (biphase-space) encoding. In sharp contrast to prior art, the proposed detection algorithms take explicitly into account the FM0 encoding characteristics, including its inherent memory. The detection algorithms are derived when error at either or only one out of two tags is considered. It is shown that careful design of one-bit-memory two-tag detection can improve bit-error-rate (BER) performance by 3dB, compared to its memoryless counterpart, on par with existing art for single-tag detection. Furthermore, this work calculates the total tag population inventory delay, i.e. how much time is saved when two-tag detection is utilized, as opposed to conventional, single-tag methods. It is found that two-tag detection could lead to significant inventory time reduction (in some cases on the order of 40%) for basic framed-Aloha access schemes. Analytic calculation of inventory time is confirmed by simulation. This work could augment detection software of existing commercial RFID readers, including single-antenna portable versions, without major modification of their RF front ends.Presented on: IEEE Transactions on Communication

    Ambient backscatterers for low cost and low power wireless applications

    Get PDF
    Sensors that are used in Internet-of-Things (IoT) area are hampered by extremely high costs and excessive battery power consumption – but wireless, reflective, sensor-tags could help address these issues. In agricultural applications: in order to monitor a field of 500 plants, the operating cost will typically rack up hundreds of pounds per field and will gobble tens of milliwatts per sensor. In this thesis we have tried to address some of these shortfalls by opting for each plant to have an antenna, one transistor that acts as a switch, and one microcontroller. Each sensor uses wireless communication based on a reflections technology known as backscatter. The antenna acts as a mirror and when it is illuminated with a signal, it reflects back the wave. The signal comes from an FM radio station and it is freely available in the air. The plant-sensor can modulate the information by a very smart switching of this antenna. We are trying, under laboratory conditions, to combine this low power, low-cost technology with tape-based, flexible nanomaterial printed sensors. As nanotechnology enables flexible inkjet printed electronics to revolutionise IoT applications, we developed a new technology and we hope that our nanomaterial based printed circuit sensors will help push state-of-the-art additive manufacturing in agricultural technology
    corecore