541,950 research outputs found

    An Ultrahigh-throughput Microfluidic Platform for Single-cell Genome Sequencing.

    Get PDF
    Sequencing technologies have undergone a paradigm shift from bulk to single-cell resolution in response to an evolving understanding of the role of cellular heterogeneity in biological systems. However, single-cell sequencing of large populations has been hampered by limitations in processing genomes for sequencing. In this paper, we describe a method for single-cell genome sequencing (SiC-seq) which uses droplet microfluidics to isolate, amplify, and barcode the genomes of single cells. Cell encapsulation in microgels allows the compartmentalized purification and tagmentation of DNA, while a microfluidic merger efficiently pairs each genome with a unique single-cell oligonucleotide barcode, allowing >50,000 single cells to be sequenced per run. The sequencing data is demultiplexed by barcode, generating groups of reads originating from single cells. As a high-throughput and low-bias method of single-cell sequencing, SiC-seq will enable a broader range of genomic studies targeted at diverse cell populations

    Single cell transcriptome analysis using next generation sequencing.

    Get PDF
    The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome analysis. In recent years, research has primarily focused on the development of methods for single cell analysis. Single cell analysis aims at gaining (novel) insights into biological processes of healthy and diseased cells. Some of the challenges in transcriptome analysis concern low abundance of sample starting material, necessary sample amplification steps and subsequent analysis. In this study, two fundamentally different approaches to amplification were compared using next-generation sequencing analysis: I. exponential amplification using polymerase-chain-reaction (PCR) and II. linear amplification. For both approaches, protocols for single cell extraction, cell lysis, cDNA synthesis, cDNA amplification and preparation of next-generation sequencing libraries were developed. We could successfully show that transcriptome analysis of low numbers of cells is feasible with both exponential and linear amplification. Using exponential amplification, the highest amplification rates up to 106 were possible. The reproducibility of results is a strength of the linear amplification method. The analysis of next generation sequencing data in single cell samples showed detectable expression in at least 16.000 genes. The variance between samples results in a need to work with a greater amount of biological replicates. In summary it can be said that single cell transcriptome analysis with next generation sequencing is possible but improvements leading to a higher yield of transcriptome reads is required. In the near future by comparing single cancer cells with healthy ones for example, a basis for improved prognosis and diagnosis can be realised

    Combined aptamer and transcriptome sequencing of single cells.

    Get PDF
    The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing

    Ultraaccurate genome sequencing and haplotyping of single human cells.

    Get PDF
    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10-8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs

    Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.

    Get PDF
    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified

    A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data

    Full text link
    Deep shotgun sequencing and analysis of genomes, transcriptomes, amplified single-cell genomes, and metagenomes has enabled investigation of a wide range of organisms and ecosystems. However, sampling variation in short-read data sets and high sequencing error rates of modern sequencers present many new computational challenges in data interpretation. These challenges have led to the development of new classes of mapping tools and {\em de novo} assemblers. These algorithms are challenged by the continued improvement in sequencing throughput. We here describe digital normalization, a single-pass computational algorithm that systematizes coverage in shotgun sequencing data sets, thereby decreasing sampling variation, discarding redundant data, and removing the majority of errors. Digital normalization substantially reduces the size of shotgun data sets and decreases the memory and time requirements for {\em de novo} sequence assembly, all without significantly impacting content of the generated contigs. We apply digital normalization to the assembly of microbial genomic data, amplified single-cell genomic data, and transcriptomic data. Our implementation is freely available for use and modification

    Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model

    Full text link
    Cataloging the neuronal cell types that comprise circuitry of individual brain regions is a major goal of modern neuroscience and the BRAIN initiative. Single-cell RNA sequencing can now be used to measure the gene expression profiles of individual neurons and to categorize neurons based on their gene expression profiles. While the single-cell techniques are extremely powerful and hold great promise, they are currently still labor intensive, have a high cost per cell, and, most importantly, do not provide information on spatial distribution of cell types in specific regions of the brain. We propose a complementary approach that uses computational methods to infer the cell types and their gene expression profiles through analysis of brain-wide single-cell resolution in situ hybridization (ISH) imagery contained in the Allen Brain Atlas (ABA). We measure the spatial distribution of neurons labeled in the ISH image for each gene and model it as a spatial point process mixture, whose mixture weights are given by the cell types which express that gene. By fitting a point process mixture model jointly to the ISH images, we infer both the spatial point process distribution for each cell type and their gene expression profile. We validate our predictions of cell type-specific gene expression profiles using single cell RNA sequencing data, recently published for the mouse somatosensory cortex. Jointly with the gene expression profiles, cell features such as cell size, orientation, intensity and local density level are inferred per cell type

    Trajectory-based differential expression analysis for single-cell sequencing data

    Get PDF
    Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data. Downstream of trajectory inference for cell lineages based on scRNA-seq data, differential expression analysis yields insight into biological processes. Here, Van den Berge et al. develop tradeSeq, a framework for the inference of within and between-lineage differential expression, based on negative binomial generalized additive models
    corecore