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Zusammenfassung in deutscher Sprache 

 

Die Heterogenität von Geweben insbesondere in der Tumorforschung ist ein zentrales 

Problem bei der Transkriptomanalyse. Daher fokussiert sich die Wissenschaft in den 

vergangenen Jahren immer mehr auf die Entwicklung von Methoden zur Untersuchung 

einzelner Zellen. Durch Einzelzellanalysen wird versucht, neue Einsichten in biologische 

Vorgänge von gesunden und kranken Zellen zu erhalten. 

Dabei stellt man sich in der Transkriptomanalyse der Herausforderung, geringstes 

Startmaterial zu preparieren, amplifizieren und sukzessive zu untersuchen.  

In der vorliegenden  Arbeit wurden zwei grundsätzlich verschiedene Amplifikations-Ansätze 

mit schrittweiser Analyse durch next-generation sequencing verglichen: I. Die exponentielle 

Amplifikation mittels Polymerase-Kettenreaktion (PCR) und II. die lineare Amplifikation.  

Arbeitsabläufe für Einzelzellgewinnung, Zellaufschluss, cDNA Synthese, cDNA Amplifikation 

und Präparation von next-generation sequencing libraries wurden für die jeweiligen Ansätze 

entwickelt. Es konnte erfolgreich gezeigt werden, dass eine transkriptionelle Analyse 

geringer Zellanzahlen sowohl mittels linearer als auch exponentieller Amplifikation 

erfolgreich durchführbar ist. Höchste Amplifikationsraten von bis zu 106 konnten durch 

exponentielle Amplifikation erreicht werden. Die lineare Amplifikation hat sich als die 

reproduzierbarere Methode gezeigt. Die Analyse der next-generation sequencing Daten 

zeigte in Einzelzell-Proben mindestens eine nachweisbare Expression von 16.000 Genen. Die 

gefundene Varianz zwischen den Proben weist jedoch auf die Notwendigkeit des Arbeitens 

mit vielen biologischen Replikaten hin. Zusammenfassend kann gesagt werden, dass 

Transkriptom-Einzelzellstudien mittels next-generation sequencing durchführbar sind jedoch 

weitere Verbesserungen der beiden verglichenen Protokolle hin zu einem größeren Anteil an 

sequenzierten Transkripten anstehen. In naher Zukunft können beispielsweise durch den 

Vergleich einzelner Krebszellen mit gesunden Zellen neue Grundlagen für eine Verbesserung 

von Prognose und Diagnose bei geschaffen werden. 
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Abstract 

 

The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome 

analysis. In recent years, research has primarily focused on the development of methods for 

single cell analysis. Single cell analysis aims at gaining (novel) insights into biological 

processes of healthy and diseased cells. 

Some of the challenges in transcriptome analysis concern low abundance of sample starting 

material, necessary sample amplification steps and subsequent analysis.  

In this study, two fundamentally different approaches to amplification were compared using 

next-generation sequencing analysis: I. exponential amplification using polymerase-chain-

reaction (PCR) and II. linear amplification.  

For both approaches, protocols for single cell extraction, cell lysis, cDNA synthesis, cDNA 

amplification and preparation of next-generation sequencing libraries were developed. We 

could successfully show that transcriptome analysis of low numbers of cells is feasible with 

both exponential and linear amplification. Using exponential amplification, the highest 

amplification rates up to 106 were possible. The reproducibility of results is a strength of the 

linear amplification method. The analysis of next generation sequencing data in single cell 

samples showed detectable expression in at least 16.000 genes. The variance between 

samples results in a need to work with a greater amount of biological replicates. In summary 

it can be said that single cell transcriptome analysis with next generation sequencing is 

possible but improvements leading to a higher yield of transcriptome reads is required. In 

the near future by comparing single cancer cells with healthy ones for example, a basis for 

improved prognosis and diagnosis can be realised.  
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1. Introduction 

1.1 Single Cell transcriptome analysis 

The transcriptome contains a set of between 13.000 and 16.000 different mRNA species with 

an average length of 2.2kb [1, 2]. Due to variable frequencies per transcript, in total 400.000 

mRNAs per cell [2] are involved in characterising a cell in such action as its proliferation rate, 

developmental state and feedback to external and internal stimuli.  Information written 

down in genes at DNA level gets transcribed into the transporter molecule mRNA and if 

required translated into protein [3]. That this dogma is not a one way system was 

demonstrated by various sets of scientists over the last number of years [4]. Recently, when 

talking about cell regulation, non-coding RNAs such as microRNA, snoRNA or hnRNA have 

increasingly become a focus of research.  Controlling the expression of genes or transcripts 

enables a cell to adjust quickly to a certain physiological, environmental or disease related 

condition. Initially a tissue was believed to be a homogeneous compartment of cells all with 

the same function. In the meantime we have learned that tissues are highly organized 

compartments with many types of specialized cells in respect of their function. Therefore, 

gaining an insight into gene transcription and post-transcriptional modifications such as 

alternative splicing of healthy cell types as well as disease characteristic ones is of major 

interest to scientists. It will help to obtain a better understanding of processes in the human 

body, cell-to-cell interactions and how their misregulation leads to abnormality and disease. 

However, this heterogeneity in tissues is one of the major limitations for currently 

performed transcriptomic analyses, where the samples are normally thousands of cells 

coming from one and sometimes even several tissues. An extreme example of this 

heterogeneity are blood cells where inter-individual differences and disease-specific changes 

lead to high variability in composition [5]. Nevertheless, blood is the most widely sampled 

cellular material, which is frequently analysed for diagnostic or prognostic purposes [6]. 

Therefore it is critical to receive predictable transcriptome profiles for one specific cell type 

from a heterogeneous pool of cells. This is also the case earlier in embryonic development 

where differences between the first cells are of major interest. Along with this naturally 

occurring tissue heterogeneity come the cancer cells which display a unique heterogeneity. 

In tumor tissues indeed tumorigenic cancer cells are found together with normal cells, which 

dilute the somatic cancer cell information.  



                                                                                               Introduction – Mirjam Blattner 

2  
 

Tumor stromal cells can contain both genomic and epigenomic alterations, often distinct 

from those in the epithelial neoplasia [7]. In 2006 Clark et al defined a cancer stem cell as ‘a 

cell within a tumor that possesses the capacity to self-renewal and to cause the 

heterogeneous lineages of cancer cells that comprise the tumor’ [8]. In cancer tissue, cells of 

different function have been described but so far the so called tumour stem cell which has 

been postulated as a sub fraction of the cells in the tumour tissue with tumorigenic 

potential, has not been found (Figure 1)[9].  

 

Figure 1 Cancer stem cell theory 
Just a few single cells within a heterogeneous cancer tissue have the capacity to self-renew and to 

start growing a new tumor. 

 
Scientists are focused on investigating new methods to identify, capture and analyse these 

stem cells in the hope that by having complete knowledge of a cancer, new target 

medication can be developed and the relapse rate will drastically decrease. The 

methodological spectrum of capturing specific cells to get a homogeneous cell population or 

even just a single cell has massively expanded with new techniques such as laser capture 

microdissection (LCM) or fluorescence activated cell sorting (FACS) [5, 10]. A single cell 

contains roughly about 10 pg genomic DNA and 100 pg RNA from which just 1-3 % are 

protein coding transcripts, mRNA, and the rest is non-coding RNA, mainly ribosomal RNA 

[11]. The maximal content of messenger RNA is up to three picograms depending on the cell 

size and especially on the cell cycle stage [12]. It also seems that it can be subdivided into 

three groups of transcripts. The highly abundant transcripts, the medium expressed 

transcripts and the lowly expressed transcripts. Initial studies lead to the assumption that 

mainly the highly abundant transcripts lend the cell its specific characteristics [2]. To analyse 

a small homogeneous subset of cells or a small amount of starting material such as that from 
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needle biopsies or circulating tumor cells from blood,  stable and easy-to-handle mRNA 

amplification methods are needed. This seems to have become feasible with the 

contributions of a small group of scientists that have  been worked on the topic for the last 

two decades. Milestones have surely been developments such as a linear mRNA 

amplification procedure generating anti-sense RNA presented by Van Geldner et al. [13] in 

1992. This was then used by Eberwine for single cell analysis of a neuron carried out for the 

first time in the same year [14]. Later methods for quantification and detection of gene 

expression such as real time PCR and microarray technology were added to enable genome 

wide gene expression profiling.  However, independent of the gene expression quantification 

approach used, single cell experiments have to cope with minute amounts of starting RNA 

material. The high chance of methodically defective amplification and the strong influence of 

cell cycle stage on RNA content have to be considered as limiting factors, not to mention the 

cost of carrying out these procedures. Therefore, the approach of second generation 

sequencing which combines high throughput capability with the generation of massive 

amounts of data with a single run lead to a new level of analysis. In July 2008 Cloonan et al. 

published one of the first single cell papers using transcriptome sequencing technology [15]. 

 

1.2 Methodological Spectrum of cDNA from minute amounts of RNA 

1.2.1 Reverse Transcription 

The initial step in the workflow from RNA to cDNA to preserve the RNA of a cell, which is 

prone to hydrolytic degradation, is the reverse transcription. The reverse transcription 

reaction is not very well understood, and it is known in the community to be the most 

uncertain step in gene expression analysis. The Processivity of an enzyme , its  preference for 

specific sequences and general faultiness are difficult to predict or measure. Therefore it is 

important to run experiments as similar as possible so that the condition for every template 

is almost the same and thus cross comparison of analyses results can be achieved. There are 

basically two different ways to transcribe the whole transcriptome of a eukaryotic cell into 

cDNA. 
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Oligo(dT) Priming 

In mammalian cells nearly all protein coding transcripts carry a 3´ poly(A) tail [16, 17]. Newly 

synthesized poly(A) tails  are approximately between 100 and 250 nucleotides long [2, 18]. 

Their function varies from promoting export from the nucleus to being part of the 

translation initiation complex, to protecting the transcript from degradation and (by length 

alteration) influencing translation efficiency [19, 20].  This tail can be used as a starting site 

for transcription allowing the use of total RNA as starting material [21]. After oligo(dT) 

primer annealing the reverse transcriptase starts to extend the newly synthesised cDNA 

strand. Depending on processivity, reaction time, buffer condition and secondary structure 

every mRNA transcript gets more or less fully transcribed into cDNA. This, however, leads to 

a potential 3´ bias of the transcript [22]. Giving the reaction enough time, using single strand 

binding proteins and working under best reaction conditions can minimize this problem. 

Random Priming 

A way to overcome the issue of 3´bias and to improve the outcome of full length cDNA is the 

use of random oligonucleotides. Standard reverse transcription protocols utilise hexamers 

[23, 24] or nonamers [23, 25]. A higher cDNA yield could be reached with pentadecamers 

[26]. There are two major drawbacks of this method: 1) a 5´bias of the transcripts because of 

unspecific annealing, 2) this method will lead to transcription of ribosomal RNA as well, 

which is about 98 % of the total RNA. It depends on the method used for quantification if 

ribosomal RNA has to be depleted from the starting material prior to reverse transcription or 

not. This can be done either by techniques such as RIBO Minus, where the ribosomal RNA is 

depleted by hybridization using probes targeting the ribosomal RNA, or by enrichment of 

polyadenylated RNA using oligo-(dT)-probes which are most often bound to beads. 

However, Stahlber et al. 2004 [27] published results indicating that in fact reverse 

transcription is dependent on priming strategy but it varies for every single transcript. This 

means that the choice of the priming method is based more on the experimental design. The 

major issue working with single cells, along with RNA digestion, is the loss of transcript 

during experimental handling. Therefore, purification steps and switching of reaction vessels 

until amplification is fully complete have to be avoided. To select full length cDNA transcripts 

for later analysis a technique known as a switching mechanism at the 5´end of RNA template 
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(SMART) can be used [28]. It is in the nature of a reverse transcriptase to extend the 3´end of 

the cDNA with a few cytosines after transcribing the RNA strand. This overhang can be used 

as an anchor to anneal a specific sequence tagged with guanines and the cDNA then gets 

extended after re-annealing of the enzyme [29]. This new sequence is the potential starting 

sequence for an isothermal linear amplification or the universal priming site for an 

exponential amplification. 

1.2.2 Amplification approaches 

 

Using techniques such as microarrays or next generation sequencing for transcript 

quantification means that at least 100 ng up to several micrograms of starting material are 

needed. An average mRNA content of 0.1 pg per cell requires 105 up to 106 fold 

amplification. Amplification in this range has high potential for bias. Bias in this case means 

the shift in the quantitative ratio of transcripts to each other. This occurs mainly in a multi-

template reaction because of preferred amplification of certain sequences (and its resulting 

secondary structure), template lengths or template amounts [30]. The high diversity of a 

complex transcriptome and the massive amplification needed requires a method of very 

limited bias. Two ways of amplifying mRNA have been described so far.  

Exponential 

Polymerase chain reaction (PCR) described in 1983 by Mullis et al. is the common method 

for an exponential amplification [31]. A maximal amplification factor of 3 X 1011 has been 

reported [32]. Nevertheless, reaching a high concentration (>1011 molecules per µl) of newly 

synthesized templates inhibits their own duplication by quickly re-annealing and therefore 

the PCR level move to a plateau phase [33]. During the last few cycles of the reaction higher 

rates of PCR bias and artefact formation occur [30]. For primer annealing, the temperature 

of the PCR reaction decreases and three different kinds of duplexes can be formed. Starting 

with a high primer concentration duplexes between primer and template normally occurs. 

The rate of template re-annealing, termed a homoduplex, increases proportional to the 

concentration and therefore templates starting with lower concentration will catch up which 

induces a strong bias. As a result of forming a heteroduplex  between two different 

templates the repaired sequence is a mixture of the two parent heterologous sequences [30, 
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34]. An incompletely extended primer can act as a primer in the following PCR cycle. Having 

some homologousous sequences between different templates, extended primers from one 

strand can anneal to the other and a chimeric sequence results [35]. Heteroduplexes and 

chimera formation can lead to false detection of new gene rearrangements or SNPs. PCR 

bias due to differences in primer binding energy in a multi-template reaction can be reduced 

if all templates are ligated to a universal primer. However, guanine-plus-cytosine content of 

the templates will influence its amplification efficiency [36]. One way to overcome the above 

mentioned issues is to stop the PCR reaction as early as possible. Real time monitoring of the 

reaction (real-time PCR) helps to determine the best time. An amplification of at least 

100.000 fold for single cell material exceeds this point and therefore the use of exponential 

amplification as a method for single cells has to be questioned.  

Linear 

The most commonly used mechanism for linear isothermal RNA amplification is based on T7 

RNA polymerase-mediated in vitro transcription (IVT) and was first described by Eberweine 

and colleagues [13]. Starting at the T7 promoter sequence the polymerase transcribes cDNA 

into complementary RNA (cRNA) which can be then retranscribed into cDNA. In so doing, a 

starting material can be increased up to 1.000 fold in one round. Second and third rounds of 

amplification are possible [37].. It is widely believed that linear amplification is much less 

influenced by sequence content and therefore bias is almost negligible. The T7 IVT amplified 

samples, aRNA, have been shown to supply the same results as the same non-amplified 

material using microarray technology [38]. However, this method with three rounds of 

amplification is a time consuming procedure and degradation of the newly transcribed RNA 

is a big concern. Another way to amplify small amounts of RNA in an alternative linear 

approach, termed  Ribo-SPIATM. It was recently described by Dafforn et al. [39].  Initially, a 

tailed DNA-RNA chimeric primer hybridizes to the 3´poly (A) tail and first strand cDNA is 

generated via reverse transcription.  Synthesizing the second strand a short sequence of 

RNA-DNA results and by RNAseH treatment a new priming site is generated. Due to the 

strong strand displacement function of the used polymerase highly efficient linear 

amplification of one strand takes place (detailed information see Material & Methods). From 

a time and efficiency perspective linear amplification cannot keep up with exponential 

methods but the ability to maintain the polarity of the transcript without laborious 
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modification is a major advantage.  This in turn gives the opportunity to identify which 

strand gets transcribed.  Strandedness provides important information for novel genes about 

their possible function, both at the RNA (structure and hybridization to other nucleic acid 

molecules) and protein level. Antisense transcription is characteristic of eukaryotic genes 

and is thought to play an important regulatory role in RNA interference mainly with the 

sense strand. Estimates of the fraction of genes associated with antisense transcripts in 

mammalian cells vary from less than 2% to more than 70% of the total gene number [40-42]. 

Knowledge of a transcripts orientation helps to resolve colliding transcripts and to correctly 

determine gene expression levels in the presence of antisense transcript [43]. 

1.3 cDNA Quantification  

After obtaining the cDNA the final step in gene expression analysis is its quantification. A 

number of different technologies to detect transcripts have been developed. The three main 

ways to quantify the gene expression are: real time PCR (qPCR), hybridization-based and 

sequencing-based approaches. Real time PCR is a highly specific tool with the largest 

dynamic range. It requires in principle just a single strand of the template. However existing 

knowledge about the sequences are a prerequisite and the number of transcripts which can 

be analysed at the same time is limited.  

Hybridization-based methods usually involve the hybridization of cDNA on a microarray 

combined with fluorescence labeling. The possibility of custom-made microarrays including 

probes targeting splice variants while keeping the strand information (strandedness) make 

microarrays an advanced tool for transcriptome analysis. Arrays allow the mapping from 

several base pairs to ~100 bp [44-46]. But there are several limitations to this technique: 1) 

Existing knowledge about genome sequences is needed, 2)high background levels owing to 

cross-hybridization as well as a limited dynamic range of detection based on background and 

saturation [47]. Moreover, to compare results from different experiments is difficult with 

both technologies mentioned and they require complicated normalization methods.  

In comparison sequencing-based approaches directly determine the cDNA sequence. This is 

termed RNA-Sequencing (RNA-Seq). Even though library preparation involves a complex 

workflow, the chance of producing high quantity de novo data in a short time will 

revolutionize the way in which eukaryotic transcriptomes are analysed. Unlike microarrays, 

sequencing costs are constantly decreasing. All this will make the sequencing based 
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approaches the preferably method used in genome (transcriptome) wide gene expression 

analysis. However, the accurate and reproducible quantitative analysis of a single cell 

necessitates overcoming certain obstacles. Starting with the obvious like RNA digestion, loss 

of material or simply labour handling issues because of small volumes right up to biological 

issues such as different RNA content, different cell cycle or influencing the transcriptome by 

abnormal treatment during selection. To workaround these issues an affordable high 

throughput analysis method enabling replications had to be provided.  

1.4 Next generation Sequencing 

1st generation 

Since the early 1990s DNA sequencing has almost exclusively been done utilizing capillary-

based Sanger biochemistry [48, 49]. The basic principle of this method is ‘cycle sequencing’ 

which contains the template denaturation step, primer annealing and primer extension. 

Known sequences  flank  the region of interest which provides a universal primer annealing 

and start point. Each round of primer extension is terminated by the incorporation of 

fluorescently labeled dideoxynucleotides (ddNTPs) in a stochastic way. The incorporated 

ddNTPs lead to a halting of the reaction and the label on the terminating ddNTP of any given 

fragment corresponds to the nucleotide identity of its terminal position. High-resolution 

electrophoresis leads to an identification of the discrete length of every single-stranded, 

end-labeled extension product such that in the end every nucleotide should at least once 

have a terminal position labeled with its specific fluorescence colour. Finally, software 

translates these traces into DNA [50, 51]. Drawbacks of this method are the limited level of 

parallelization. Currently a maximum of 384 independent capillaries is possible. The maximal 

read length is about 1.000 bp. Sanger sequencing costs in the order of $0.50 per kilobase. 

Initially, the Sanger method was used to sequence cDNA but this approach is relatively low 

throughput, expensive and non-quantitative. Tag-based methods including serial analysis of 

gene expression (SAGE) [52], cap analysis of gene expression (CAGE) [53]  and massively 

parallel signature sequencing (MPSS) [54]  were developed to overcome these limitations. 

But even though these are an improvement the technique is still based on expensive Sanger 

sequencing technology and a significant portion of the short tags cannot be uniquely 

mapped to the reference genome [55]. 
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2nd generation 

The concept of second generation sequencing in the sense of cyclical-array sequencing can 

be summarized as the ´sequencing of a dense array of DNA features by iterative cycles of 

enzymatic manipulation and imaging-based data collection´ [56]. This has recently been 

realized in many different commercial products: 454 Genome Sequencer (Roche Applied 

Science, Basel); Solexa technology, Genome Analyzer (Illumina, San Diego); SOLiD platform 

(Applied Biosystem, Foster City); the Polonator (Dover/Harvard).  Even though these 

platforms are quite different in their biochemistry and their arrays, the work flow is 

conceptually similar. The first step in library preparation is random fragmentation of DNA 

followed by ligation of adapter sequences. An extension of this protocol would be to 

generate libraries of mate-paired tags with controllable distance distributions [57]. The 

generation of clonal amplicons can be achieved in different ways, including emulsion PCR on 

the surface of microbeads (454, SOLiD, Polonator)[58] or bridge PCR on a single location in a 

planar substrate (Solexa) [59].  In the end every single library molecule ends up in a clustered 

colony of amplicons bound to solid support. The sequencing itself relies on synthesis which 

means alternated cycles of enzyme-driven biochemistry. Serial extension of primed template 

can either be done by a polymerase (Solexa,454)[60] or ligase (SOLiD) [57]. Finally data is 

generated by imaging of the full array at each cycle and successive image analysis. 

The main advantages compared to first generation sequencing are in vitro construction of a 

sequencing library over in vivo cloning methods. Array-based sequencing enables a much 

higher degree of parallelisation than conventional capillary-based sequencing and finally 

only microliter-scale reagent volumes are used. Altogether as the effective size of 

sequencing can be on the order of 1 µm, hundreds of millions of sequencing reads can 

potentially be obtained in parallel and this result dramatically lowers the cost of DNA 

sequencing production. The most prominent disadvantage is the read-length. For all the new 

platforms, read-length is currently much shorter than conventional sequencing [51] though 

this limitation is rapidly improved with new longer read technologies. 
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Table 1 Summary of commercially available second generation sequencing platforms 

 
Based on three puplications: Shendure & Ji, Nature biotechnology, 2008; Elaine Mardins, Annual reviews, 2008; 
Wang et al., Nature Reviews, 2009 

1.5 Challenges for RNA-Sequencing 

1.5.1 Library construction 

The ideal way to sequence the transcriptome would be to identify and quantify all RNAs 

directly, small or large. Although there are only a few steps in RNA-Seq  (cDNA 

fragmentation, library preparation, sequencing) it does involve several manipulation steps. 

For example, large RNA molecules must be fragmented into smaller pieces (100-500bp) to be 

compatible with most deep-sequencing technologies. Common fragmentation methods are 

RNA fragmentation (RNA hydrolysis) and cDNA fragmentation (DNase I treatment, UDG 

treatment or sonication). In the case of minimal input material the fragmentation step has to 

be done after amplification of cDNA. Each of these methods creates a different bias. Short 

reads that are identical to each other can be obtained from cDNA libraries that have been 

amplified. These could be a reflection of abundant RNA species, or they could be PCR 

artefacts. This has to be determined  before analyses can be done [55]. 

1.5.2 Bioinformatics  

A quite obvious issue is how to store, retrieve and process large amounts of data, which has 

to be overcome to reduce errors in image analysis and base calling and remove low-quality 
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reads. A first step after generating reads is to map them to the reference genome. However, 

short transcriptomic reads also contain reads that span exon junctions or that contain 

poly(A) ends – these cannot be analysed in the same way normal reads can.  One solution is 

to compile a library containing the entire known and predicted junction sequences but still 

the challenge remains to identify novel splicing events. Large transcriptome alignment is also 

complicated by the fact that a significant portion of sequence reads match multiple locations 

[55].  

1.6 Aims and focus of the project 

In this project I first started to learn how to handle small volumes in general and especially 

small amount of RNAs. I had to learn how to work completely free of any RNAses and to find 

out what the requirements of a successful protocol are. The first comparative studies were 

carried out with a simple cell dilution series of a commonly used cell line (HEK293T). Initial 

studies to determine best transcription efficiency compared to various RT enzymes as well as 

different primer concentration had to be done. Also different ways to amplify small amounts 

of RNA were tested; T7 in vitro transcription, PCR based methods and linear amplification 

based on Ribo-SPIA technology. The main focus of my work was to compare linear and 

exponential amplification approaches regarding their bias and protocol handling. 

Cooperation with two different companies promoting these technologies was initiated: 

Miltenyi and its µMACS SuperAmp Kit as the method of choice for exponential amplification 

and NuGEN technologies and its WT Ovation One-Direct RNA Amplification System 

representing linear amplification. As a personal comment it was important to get trust and 

good communication with both companies so that specific changes in the respective 

chemistries could be made. Finally the best way to amplify the transcriptome of a single cell 

could be realised with all the benefits as well as limitations. Next generation sequencing 

implementing the ABI SOLiD platform was used to analyse the obtained spectrum of 

amplified cDNA as well as performing first studies on gene expression. 
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2. Material and Methods  

2.1. Material 

2.1.1. Biological material 

 HEK293T, Human Embryonic Kidney 293T cells  

 HeLa cells, Cervical cancer cells  

 SW480, Colon cancer cell line 

2.1.2. Chemicals, Buffers, Media      

 100 % Ethanol, Merck 

 ATP, NEB 

 BSA, NEB  

 Cell lysis buffer, Ambion 

 DMEM, Biochrom 

 DNA away, Molecular BioProducts 

 dNTP´s, dUTP,  Fermentas 

 Elution buffer (10mM Tris), Qiagen 

 Ethidium bromide, Sigma-Aldrich 

 Fetal calf serum, Bioc 

 Magnesium chloride, Sigma-Aldrich 

 Nocodazol, Sigma 

 PBS, Biochrom 

 Penicilin/Streptomycin, Biochrom 

 RNase free water, Sigma 

 RnaseZap, Ambion 

 SybrGreen PCR Mix, Roche 

 T4 Gene 32 Protein, NEB 

 TAE Buffer, Inhouse 

 TaqMan PCR Mix, Roche  

 TrisHCL, Sigma-Aldrich 

 Trypsin, Biochrom 

 Ultra Pure Agarose, Invitrogen 

 

2.1.3. Enzymes 

 DNA Polymearse, TaKaRa Ex Taq, 

TaKaRa (5U/µl) 

 DNA Polymerase I, Large (Klenow) 

Fragment, NEB (5 U/µl) 

 DNA Polymerase, Phusion, 

FINNZYMES (2U/µl) 

 DNase I, NEB (2U/µl) 

 Exonuclease I, NEB (20 U/µl) 

 Expand Long Template PCR System 

(5U/µl) 

 M-MLV Reverse Transcriptase, 

Ambion (100//µl) 

 M-MuLV Reverse Transcriptase, 

Enzymatics (200U/µl) 

 Phi29, Enzymatics (10U/µl) 

 Proteinase K, Inhouse (20µg/µl) 

 RNase H, Ambion (10U/µl) 

 RNase Inhibitor, ABI (20U/µl) 

 SuperScript Transferase III Reverse 

Transcriptase, Invitrogen (100U/µl) 

 T4 DNA Ligase, Enzymatics (600U/µl) 

 T4 Polynucleotide Kinase (10U/µl) 

 Terminal Transferase, NEB (20U/µl) 

 Uracil-DNA Glycosylase, NEW (5U/µl) 
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2.1.4. Kits 

 µMACS SuperAmp Kit, Miltenyi 

 Cell-to-cDNA Kit, Ambion 

 End Repair mix, Enzymatics 

 PCR Purification Kit, Qiagen 

 RNeasy Mini Kit, Qiagen  

 SuperScript® III CellsDirect cDNA 

Synthesis Kit, Invitrogen 

 WT Ovation, One-Direct RNA 

Amplification System, NuGEN 

 

2.1.5. Oligo’s (Primers and Adapters), DNA and RNA ladders 

 0.1 - 2 Kb RNA Ladder, Invitrogen (1µg/µl) 

 100 bp, 1 kb DNA ladder, Fermentas 

 List of all used primer sequences is attached (Table 1, supplementary) 

  

2.1.6. Devices 

 Bunsen burner 

 Centrifuge 5415 D, Eppendorf 

 Centrifuge 5810 R, Eppendorf 

 Covaris S2, Covaris 

 FACS, Diva, BD Biosciences 

 Gel electrophoresis, Bio Rad 

 LightCycler 480, Roche 

 Macs Multi Stand, Miltenyi 

 Magnetic separation block 

 Mastercycler gradient, Eppendorf 

 Microscope 

 ND 1000 Nanodrop, Thermo 

Scientific 

 SOLiD 3+ sequencer, ABI Serie 

 SPRIPlate 96R Super Magnet plate, 

Agencourt 

 Thermocycler gradient, MJ Research 

PT-200,  Eppendorf 

2.1.7. Consumables 

 384 well plate sealing, Roche 

 384 well plate for Roche LC 480,  

Roche 

 5 ml, Sarstedt 

 Falcon tube 15, 50 ml, Greiner bio-

one 

 Filtertips 10 µl, 20 μl, 200 μl, 1 ml, 

Biozym 

 Low retention filtertips 10 µl, 20 μl, 

200 μl, 1ml, Starlab 

 LowBind reaction tubes 0.5 ml, 1.5 

ml, 2 ml, Eppendorf 

 Microcapillary tube, calibrated, 50 µl, 

Sigma-Aldrich 

 Multiply - µStripPro, 0.2 ml, Starstedt 

 PCR-Softstrips 0.2 ml, farblos, Biozym 

 Reaction tubes 0.5 ml, 1.5 ml, 2 ml, 

Sarstedt 

 T75 cell culture flask, TPP 

 Tips 10 μl Gilson 
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2.2. Methods 

2.2.1 Cell culture 

All cell lines have been cultivated under standardised conditions. DMEM containing 10% FCS 

and 1% Penicillin/Streptomycin was used as culture medium. Culturing conditions were set 

as 37°C with 95% rH and 5% CO2. In three day cycles cells were harvested by trypsinisation, 

washing with PBS, pelleting by centrifugation and resolving in fresh medium. Cells were 

diluted one to three to gain optimal growing conditions. 

Equalizing transcriptome level and cell harvest 

For equalizing the transcriptome level, cells were G2/M-phase arrested by Nocodazole 

treatment. After aspirating DMEM medium from cells, 12 ml fresh DMEM (37°C) + 1 µl 

Nocodazole (5 mg/ml) per T75 cell culture flask were consistently distributed and incubated 

for 16h at 37°C. Cells were separated by washing with 10ml PBS (37°C) and covered with 2 

ml Trypsin (0.05%). Shortly afterwards  cells were aspirated with 1.5 ml Trypsin and 

incubated for around 10min at 37°C until they were detached. Trypsin was inactivated with 

10 ml DMEM and the cell lysate was dissolved and entirely separated by up and down 

pipetting three times. 

Concentration determination  

Cell number measurement was done using a counting chamber. 5 minutes slowly 

centrifuging (500rpm) generates a cell pellet. The pellet was resuspended in PBS to get a 

stock concentration of 2500 cells/µl. Cell solution was split into aliquots of 1.5 ml tubes and 

shock-frozen in liquid nitrogen. For further experiments these aliquots have been stored at -

20°C. 

2.2.2. Isolation of single cells 

Fluorescence activated cell sorting (FACS) 

FACSDiva Version 6.1.2. from BD Bioscience was used as described in the manual. Cells were 

harvested and diluted in PBS so that there would be no inhibition of further reactions. Single 

cells were sorted in 0.2 ml tubes containing 1.1 µl lysis buffer and 0.15 µl RNase inhibitor. 
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Cells were spun down immediately after sorting and continually started with the reverse 

transcription protocol.  

Mouth pipetting 

To prepare the tip of a microcapillary pipette the middle part was heated with a naked flame 

and by pulling gently at both ends, a really thin middle part results. After breaking at this 

mid-point, the resulting capillary termini were rounded off by melting the glass in a naked 

flame for less than a second. The resulting pipette was put on a 15-inch aspirator tube. Cells 

were harvested and highly diluted in PBS. Under a microscope with a 100 to 200 fold 

enlargement a single cell was sucked gently into the prepared pipette and blown out into 0.2 

ml tubes containing 1.1 µl lysis buffer and 0.15 µl RNase inhibitor. Immediately, the reverse 

transcription protocol was started to avoid any degradation. A short video showing the 

process of collecting a single can be found in the attached CD. 

2.2.3 Reverse transcription and amplification 

None of the applied protocols includes a DNA digestion step due to the high risk of RNA 

degradation during incubation. 

SuperScript III CellsDirect cDNA Synthesis System  

Protocol was carried out as set up by the company. For low input material, the end volume 

was reduced down to 5 µl, concentrations were kept in the standard protocol. 

Ambion Cell-to-cDNA 

Protocol was carried out as set up by the company. For low input material, the end volume 

was reduced down to 5 µl, concentrations were kept in the standard protocol. 

In house protocol 

Regarding the Ambion Cell-to-cDNA kit, 0.5 µl of cell solution, with a maximum number of 

2500 cells, were incubated and lysed in 1.25 µl Ambion lysis buffer at 75 °C for three 

minutes. Reverse transcription is a two step protocol. First a primer annealing step with 

0.625 µl (0.5 µM) Oligo dT24, 0.5 µl (2.5 mM each) dNTP mix and 0.175 T4 gene 32 protein (2 

µg/µl) was performed by heating up the product reaction mix to 70°C for one minute and 
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then cooling down on ice. In the second step 0.56 µl RT master mix was added to each 

reaction containing 0.33 µl 10X RT buffer, 0.1 µl M-MuLV Reverse Transcriptase (Enzymatics) 

and 0.13 µl RNAse Inhibitor (ABI). Reaction was carried out in 3.61 µl end volume. Incubation 

temperature was 42°C for  30 min followed by heat inactivation for 10 minutes at 95°C. 

Whole transcriptome preparation of a single cell, ABI 

The whole transcriptome analysis preparation protocol for a single cell recommended by ABI 

is based on a protocol published by Kurimoto et al. in 2006. Little changes have been made. 

After lysing the cell, mRNA is extracted by using Oligo dT-UP1 labeld beads. cDNA synthesis 

was extended from 5 min to 30 min to get full-length first strand cDNAs. After poly(A) tailing 

of the newly synthesized cDNA strand this sequence is used as an anchor for the universal 

UP2 primer. Second strand synthesis can now be done. To avoid a bias of short primer 

sequences in library preparation UP1 and 

UP2 are modified with an amine at their 

5´end.  Therefore no ligation of 5´end 

fragments to SOLiD library adaptors can 

occur. Extension time in the PCR based 

amplification reaction was extended from 

three to six minutes. A schematic overview 

of the workflow is outlined in figure 2. This 

protocol, as described in the initial paper, 

including a few minor changes was carried 

out as mentioned above. Because of high 

primer dimerization a new UP2 sequence 

was designed, termed UPA. 

 

 
 

Figure 2 Schematic workflow overview of whole transcriptome preparation of a single cell by ABI 
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µMACS SuperAmp Kit, Miltenyi 

The work was carried out as described in the protocol. No changes to the commercially 

available kit were made. This procedure is comparable to the protocol described by 

Kurimoto et al. in 2006. The special feature of this kit is the technique of the µMACS 

columns. The magnetic field of the µMacs Multi Stand gets exponentiated and focused on a 

specific area within the µMacs columns due to containing little pieces of iron at this part. 

Because of this strong magnetic field the mRNA which is connected to Oligo dT magnetic 

beads is held and the washing procedure can be done without any loss (Figure 3). I used one 

set of standard primers and one set of 5´-biotin modified primers for the PCR based 

amplification. Sheared amplification products generated with the biotin modified primers 

were primer depleted by magnetic streptavidin bead treatment, before they were subjected 

to the standard SOLiD library preparation.  

 

Figure 3 Schematic overview of the principle workflow of µMACS  SuperAmp 
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WT Ovation, One-Direct RNA Amplification System, NuGEN 

Lysis and linear amplification were carried out as described by the manufacturer.  To make 

sure that the reverse transcriptase generates cDNA only  from mRNA the NuGEN chemistry 

was modified from using both random priming and Oligo (dT) priming to just Oligo (dT) for 

cDNA synthesis. The Oligo (dT) cDNA primer is a DNA/RNA hybrid. After generating the 

second strand, RNAse H is able to digest the RNA of the newly synthesised DNA/RNA double 

strand. New primers can anneal and the used polymerase with a strong strand displacement 

function synthesizes copies of the initial strand (Figure 4). The limiting factor in this assay is 

the polymerisation length of DNA polymerase. Currently after 300 to 500 bp the enzyme 

stops synthesising and drops off. 

 

Figure 4 Schematic overview of the linear amplification system by NuGEN 
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2.2.4 SOLiD Library Preparation 

Library preparation for double stranded DNA – Short fragment library, ABI 

The protocol for double stranded DNA library preparation is based on the SOLiD short 

fragment library preparation protocol by ABI. To reduce costs, enzymes were exchanged 

without loss of efficiency. First of all DNA was sheared down to 100-110 bp fragments with 

the Covaris S2 System. Templates at a concentration ranging from 10 ng to 5 µg were mixed 

with water up to 100 µl. Six rounds of shearing each 60 seconds long with 200 cycles per 

burst, duty cycles of 10% and intensity of 5 were done. End repair of the fragments was 

carried out as described for the Enzymatics end repair mix. The amount of double stranded 

P1 and P2 adaptors needed for the reaction was calculated with the following formula: 

 

 

 

 

Ligation reaction was done with 2 µl T4 Ligase (600 U/µl) from Enzymatics in a final volume 

of 100 µl. In contrast to the original protocol, nick- translation and PCR amplification were 

done after adaptor ligation and before size-selection on an agarose gel. The PCR protocol 

was done according to the ABI protocol except of the Phusion DNA polymerase (1 U) of 

FINNZYMES which was used in combination with the 5 X Phusion HF buffer in a total volume 

of 100 µl. The amplicon was size-selected by a 2 % agarose gel within a fragment size of 150 

to 200 bp and quantified via real time PCR. 

Library preparation for single stranded DNA – In house protocol 

The workflow structure of our library preparation protocol from single strand DNA 

fragments is copied from the Small RNA Expression Kit (SREK) by ABI. The main difference is 

that the SREK protocol is made for library preparation straight from RNA molecules. 

Therefore we had to design our own adaptors and as a result changes in the components 

were made. The protocol contains five steps. Fragment shearing, adaptor hybridization, 

adaptor ligation, second strand synthesis and finally amplification. For single stranded DNA 

fragmentation the Covaris S2 System was used. The shearing protocol was optimized for 
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single stranded DNA to achieve a fragment size of 100 bp´s. Duty cycles were set to 10%, 

with an intensity of five and 200 cycles per burst. DNA was diluted in water to achieve the 

final shearing volume of 100 µl according to the procedure manual. Double stranded adaptor 

1 is a hybrid of the internal linker sequence and its complementary sequence extended with 

a 3´overhang of six random nucleotides. Adaptor 2 is a hybrid made of the P1 adaptor 

sequence and its complementary sequence with a 5´overhang of six random nucleotides 

(Figure 5).  For a successive ligation the 5´end of the template (blue dot) and 5´end of 

internal linker sequence (red dot) have to be phosphorylated. Adaptors were mixed to a 

concentration of 1.5x1013 molecules each per µl. Reaction mix contains 20µl template (70 

ng/µl), 25 µl elution buffer and 1.5 µl adaptor mix and temperature was set to 65°C for 10 

minutes and 16 °C for 15 minutes. Hybridization product was ligated with 5 µl of ATP (10 

mM) and 2 µl T4 ligase (600 U/µl) at 37°C for 30 minutes. For the following reactions a 

standard PCR purification (Qiagen) was done and the product was eluted in 30 µl EB buffer. 

Second strand synthesis mix contains 30 µl purified template, 1 µl dNTPs(2.5 mM each), 5 µl 

Phi29 buffer, 1 µl Phi29 (10 U/µl), 5 µl BSA (1 mg/µl) and 8 µl H2O. Reaction conditions were 

set to 30 min at 30 °C. Amplification PCR master mix contained 5 X Phusion HF buffer, 1 µl 

primer mix (P1 and P2-Barcode-Internal linker), 1 µl purified template, 0.5 µl Phusion (2 

U/µl), 4µl dNTPs (2.5 mM each) and 33.5 µl H20. Cycling condition were as follows:  98 °C for 

30 sec. and 17 cycles of 98 °C for 10 sec, 62°C for 30 sec, 72°C for 30 sec. To determine the 

optimal cycling number 5 µl per template were removed after various cycles. In this way an 

over-amplification should be avoided. After this, large scale amplification with 5 x 50 µl PCRs 

was carried out with the remaining template followed by a size-selection. 

 

Figure 5 Schematic overview of adaptor design and adaptor hybridization 

5´end of adaptor carrying internal linker sequence was phosphorylated (red dot) as well as the 5´end 

of sheared cDNA fragment (blue dot). Sense and antisense strand of adaptors were equally mixed 

and hybridized. The same procedure was done for hybridizing adaptors and cDNA fragment. 
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2.2.5 Exonuclease treatment 

Digestion of remaining primer by exonuclease (E.coli,NEB) treatment was carried out with an 

exonuclease concentration of 1 U/µl reaction volume at 37°C for 30 min.   

2.2.6 PCR 

Standard PCR 

The standard PCR was performed in 10 μl reactions containing the following components:  

20 mM TrisHCl, 16 mM (NH4)2SO4, 25 mM KCl, 2 mM MgCl2, 500 μM each dNTP, 1 - 1.4 U 

Taq Polymerase, 0.54 M betaine, 1.34 M DTT, 1.34 % DMSO, 11 μg/ml BSA and 0.3 μM 

forward and reverse primer and a varying template concentration. The PCR cycling program 

consisted of 30 cycles with 15 sec. at 95°C, 30 sec. at 60°C and 15 sec. at 72°C. PCR reactions 

were stopped after 2min. at 72°C for final extension.  

Real time PCR 

Real time PCR was performed in 10 µl reactions by either using Roche SyberGreen mix with a 

final primer concentration of 0.3 µM or Roche TaqMan mix and a primer-probe mix 

concentration of 1 µM  on the Roche LightCycler 480. A two step temperature protocol was 

used for both assays, TaqMan and SybrGreen. Five minutes at 95°C to activate the enzyme 

was followed by 40 up to 45 cycles of a denaturation step of 10 sec. at 95°C and an 

annealing/ elongations step for 40 sec. at 60 °C. Analyses were done using the supplied 

Roche LightCycler software. Relative quantification analyses were made with the second 

derivate method and crossing points compared to each other. Human mRNA extracted out 

of HeLa cells and transcribed in cDNA with SuperScript III was used as positive control for all 

qPCR assays.  

Melting curve analysis 

Melting curve  analysis was performed with every SybrGreen assay to check PCR products for 

integrity. One minute of complete denaturation at 95 °C and one minute at 60°C to form 

duplexes was followed by a constant temperatures increase of 0.11 °C/sec. up to 95 °C. This 

leads to a characteristic melt curve for every amplicon. Primer dimers and erroneously 

amplified products are distinguishable from the target amplicon by their melting peak.   
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2.2.7 Concentration determination 

Nanodrop 

To determine the concentration of single strand DNA or double strand DNA, 1 µl template 

was analysed by the ND 1000 Nanodrop (Thermo Scientific) as described in the manual. 

Gel electrophoresis 

Horizontal gel electrophoresis on an agarose gel leads to DNA separation based on its 

fragment length. By adding ethidium bromide into the gel and exposing it to UV light the 

fragments can be seen and an image can be taken. Agarose was used in a concentration of 

1% up to 2% depending on the expected fragment length. After heating up the agarose in 1 X 

TAE buffer ethidium bromide was added in a concentration of 0.5 µg/ml. 

2.2.8 ABI Sequencer 

For performing sequencing on the ABI SOLiD 3+ sequencer quantified libraries were adjusted 

to 50 pg/µl for bead preparation carried out as described by the manufacturer. Bead 

deposition (quads, each 96 mio beads) and loading of the sequencer was carried out as 

described in the ABI SOLiD manual. Sequencing was performed with 35/50bp fragment 

sequencing kits. 

2.2.9 Bioinfomatics 

Sequencing analysis and maToBam conversion 

Reads were processed using the whole transcriptome pipeline integrated in the Bioscope 

package from Applied Biosystems. Processing was split into three steps: Filtering (repetitive 

sequences, run chemistry, rRNA, tRNA, etc.), mapping against genome (HG19) and mapping 

against exon-exon junctions (generated internally using refGene.gtf version hg19). Mapping 

was performed in seed&extend mode seeding first 25bp of the reads allowing 2 mismatches 

and extending the aligned seeds with a mismatch penalty score of -2 in all three processing 

steps. After mapping the integrated merging pipeline was used to assign whether the reads 

belong to non-relevant sequences (filtering) or if they came from genomic or exon-exon-

junction content. Finally color-space reads got translated into base-space. 
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Transcriptome analysis 

Further analysis was carried out on transcriptome reads. We defined the transcriptome as all 

known exons in the genome as given by the EnsEMBL 56 gene annotation. Any read which 

overlapped by 1bp to a known exon was classified as a transcriptome read. 

Homopolymer analysis  

To analyse in particular the amount of adenines close to stacked sequenced repeat regions, 

termed pileup regions, three bioinformatic analysis steps were taken. First, all repeat regions 

with sequence coverage over 40 were collected in one file. In the second step sequenced 

regions were extended by 15 bases in the flanking regions. In the final analysis step the last 

twenty bases, 5 bases of repeat region and 15 bases of flankeing genome sequence, were 

analysed for the amount of 8-mer homopolymer stretches such as poly A/T/G/C. As a 

control, one million randomly generated 20mers were also analysed. 

Gene expression quantification 

Apart from any possible bias, it is also important to find out the robustness and 

reproducibility of the reverse transcription and amplification. Therefore the amount of read 

counts per transcript (normalized to their length) and the total amount of reads were 

compared between the samples of one assay. This analysis is termed RPKM and the 

generated score has a value for read counts per kilobase of an exon model per million 

mapped reads. As the median cDNA length for the linear amplification assay is between 300-

500bp, the normalization for the linear amplification assay had to be set differently (2.2.3). 

Therefore, all genes up to 500 bp (the concatenated exon length only) were normalized 

using their actual length and every transcript longer than 500 bp were normalized to 500. 

Thus the RPKM values between the samples of the exponentially amplified assay, which gain 

full length cDNA, and the linear amplification can be compared.  To get a better overview of 

the whole transcriptome, analyses were made at the gene level. We used the Ensembl 56 

gene set which included an annotated gene count of 47,507. Transcription rate of a gene 

was subdivided into three classes, low, medium and highly abundant. The lowly transcribed 

genes had a minimal read count per gene of 10 and an RPKM score of 1,236. The medium 

level of expression had at least 50 read counts per gene and an RPKM score of 3,558. All 
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Genes with more than 500 read counts per gene and an RPKM score higher than 35,778 

were classed as highly expressed. 

Coverage length distribution 

The identification of new splicing variations requires full length cDNA transcripts. Therefore, 

the exponential and linear amplification methods were studied for the amplified cDNA 

length. The complete set of reads mapping to the exome respective transcriptome was taken 

and the length of coverage for each  gene was computed using the BEDTools software suite 

(BEDTools, Quinlan, AR and Hall, IM, 2010. BEDTools: a flexible suite of utilities for 

comparing genomic features. Bioinformatics. 26, 6, pp. 841–842. ). 
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3. Results  

3.1 Reverse transcription 

3.1.1 Processivity of reverse transcription enzymes 

Processitvity of three different Enzymes, M-MuLV (Enzymatics) M-MLV (Ambion) and 

SuperScript III (Invitrogen) were tested. 2 µg of a polyadenylated RNA ladder, Invitrogen, was 

used as template (Figure 6). To digest the remaining primers exonuclease (E. coli) treatment 

was maintained. All reverse transcriptions assays were based on oligo(dT) priming. No 

differences in efficiency between the in house protocol and cell-to-cDNA kit were measured. 

A shift of the 1.5 kb fragment and a smear from 0.1 up to 1.0 kb in the SuperScript III assay 

compared to the other can be distinguished. Due to the price difference between the 

commercial available kits and the in house protocol, further single reverse transcription 

reactions without amplification were done with the in house protocol.  

 

 
Figure 6 Processivity of different RT – enzymes  

M-MuLV, Enzymatics, M-MLV, Ambion and SSIII, Invitrogen were compared in a UP1-Poly(T) priming 

based assay. Digestion of remaining primers was done with an exonucleoase treatment (+/-). 

3.1.2 Primer concentration vs. Reverse transcription efficiency 

To set up a reverse transcription assay with the best possible cDNA yield, primer 

concentration and the use of a single stranded binding protein, T4 gene 32 protein, were 

tested with 500 HeLa cells (Figure 7A & B). UP1-oligo (dT) Primer was used to investigate a 

possible dependency of concentration and cDNA yield (Figure 7A). A possible effect of the 
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single strand binding protein was tested in the UP1-oligo (dT) and the UPA-oligo (dT) assay 

(Figure 7B). cDNA yield of one µl RT reaction was measured with TaqMan ß-actin qPCR. 

Highest cDNA yield was reached with the lowest primer concentration. The use of ss-

binding-protein has a strong positive effect on cDNA yield, ~ 3 fold higher, in the UP1 primer 

assay but not in the UPA assay. 

 
Figure 7 Influence of primer concentration and T4 gene 32 protein on RT efficiency 

A:  Three different primer concentrations and its influence on cDNA yield were tested. B: UP1 & UPA 

priming assay were tested with (+) and without (-) the single strand binding protein T4 gene 32. 

Quantification of cDNA was done with the ß-actin TaqMan assay. 

3.2 Whole transcriptome preparation of a single cell, ABI 

3.2.1 Real time PCR analysis of the synthesised cDNA 

Cells were sorted with FACSDiva and reverse transcriptase efficiency was checked by ß-actin 

TaqMan real time PCR.  Because of high primer dimerization between UP1 and UP2 (Primer 

alignment and gel electrophoresis see figure 1 & 2, supplementary) a new primer was 

designed, UP2, and comparative tests were carried out (Table 2). None of the four one-cell 

samples and just two out of four two-cell samples showed a positive real time PCR result 

independently of the reverse transcriptase primer. Comparing the Cp after reverse 

transcriptase no significant difference between using UP1 or UPA as RT primer can be 

detected.  The first round of 18 cycles of amplification lead to an increase of between 200 to 

1000 fold. Figure 8A is an example of the amplification curves of one up to 100 cells. In this 

case reverse transcriptase was carried out with the UP1 primer.  

A 

B 
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Level of cDNA was measured after reverse transcriptase as well as after 19 cycles of PCR. Templates 

marked with red shaded boxes did not get a positive qPCR result up to 45 cycles. 

                

Table 2 ß-actin cDNA Cp values of various cells numbers 

 

 

 

After the second round of amplification the five and ten-cell sample amplified by UP1 & UP2 

yielded a Cp of 22.75 with a deviation of 0.03 whereas the same amount of cells amplified 

with UPA & UP2 reached a Cp of 18.7 with a deviation of 0.03 (Figure 8B).  This meant a 16 

fold higher amplification with the primer pair forming much less dimerization. After the 

second round of amplification the difference in the amount of cDNA between the five and 

the ten-cell sample is not detectable anymore.  

 

Figure 8 Amplification curves of cDNA from none up to 100 cells 
A: 45 cycles of TaqMan ß-actin assay were performed. Numbers represent the amount of cells used 

as input material. B: 45 Cycles + 18 cycles of TaqMan ß-actin were performed and amount of cDNA 

measured. Templates were diluted 1:100. Cp values are listed in table 2. 

 

B 
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3.3 µMACS SuperAmp Kit, Miltenyi 

Three samples were generated by mouth pipetting, two one-cell samples (1-1 & 1-2) and 

one twenty-cell sample. Reverse transcription was maintained as described in the manual. 

One of the two one-cell samples (1-2 + Bio) and one half of the split twenty-cell sample (1/2 

20 + Bio) were amplified with modified primer. A 5´-biotin should inhibit further ligation 

steps in the library preparation. After shearing fragments containing primer sequencing will 

not become ligated to the library adaptor sequence and therefore neither amplified nor 

sequenced.  

3.3.1 Gel electrophoresis 

In a pilot test with one zero-cell sample, two twenty-cell samples and 500 pg of 

polyadenylated RNA ladder, the enzyme efficiency was tested. Based on the ladder, reverse 

transcription and amplification was successful up to 1.0 kb. Almost no differences between 

the zero-cell sample and the twenty-cell sample can be detected by gel electrophoresis. 

Different test assays had to be set up.  

 

3.3.2 Real time PCR & Spectrometric measurements 

Reverse transcriptase and amplification were controlled by real time quantification and 

spectrometer measurements. Crossing points of the real time and yield detected by the 

Nanodrop are listed in table 3. As seen in 3.2.1 single cell cDNA cannot be detected without 

amplification with this assay. Therefore, reverse transcription and especially amplification 

was successful, even though template 1-1 yielded a low cDNA output (Table 3 / Figure 10A).  

Figure 9 Gel electrophoresis amplified cDNA 
5 µl of amplified product of zero-cell, two 

twenty-cell and 500 pg RNA ladder were 

separated on a 1,5 % agarose gel.  Each 

product was separated before (-) and after (+) 

purification. 
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For real time analysis templates were 1:100 diluted. Hprt SybreGreen assay was used for 

relative quantification. Absolute quantification was done with Nanodrop after. 

Table 3 Cp values and Spectrometric quantification 

 

 

Samples were 1:100 diluted for quantification via real time PCR. Biotin modification has no 

inhibiting influence on PCR efficiency. In this experiment it seems like that this primer 

modification has even improved the reaction. Amplification curves are shown in figure 10A. 

Sample 1-2 and both twenty-cell samples reach a Cp value of approximately 18 after a 1:100 

dilution. Therefore amplification results in a ΔCp of at least 22 which means a minimal rate 

of 4 X 106 fold. The 1-1 sample amplicon has the same melting curve as the others (Figure 

10B). Therefore, it is not an artefact of genomic DNA or even RNA as shown in paragraph 

3.4.1. Real time PCR was carried out mainly with one assay, SybrGreen Hprt. Primers are 

designed to be exon spanning and therefore no genomic products are amplified (Figure 3, 

supplementary). 

 

Figure 10 Amplification curves from cDNA and melting analyses of amplicons 
A: Hprt SybrGreen assay was used to check RT and amplification efficiency of two one cell samples 

and one split twenty cell sample. B: Melting curve of the amplicon from sample 1-1/1-2 and both 20 

cell templates. 
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3.3.2 Sequencing results 

Biotin / non- Biotin  

Table 4 Number of read counts for amplification primer 

 

To amplify the cDNA in an exponential manner a universal primer sequence is required on 

both sides of the fragment. With a forward and a reverse primer a PCR can be obtained with 

these sequences. This also means that every amplified fragment starts and ends with primer 

sequences which then get sequenced. To avoid this loss of sequencing capacity primers were 

modified with biotin. A standard fragment library was made of sample 1-1, 1-2 with 

biotinylated primer, ½ 20, and ½ 20 with biotinylated primer and sequenced on the SOLiD 

platform. After amplification and shearing of all samples to 100 bp, the in the biotinylated 

primer samples fragments carrying primer sequence were depleted by magnetic streptavidin 

bead treatment. Successively the normal procedure of library prep was carried out with the 

resulting supernatant and the complete non biotin templates. After normalization the read 

counts for the primer sequences samples with modified primer and depletion were 

compared to the sample with unmodified primer. Sample 1-1 without biotin labeld primer 

and without depletion has 4.7 times more counts for primer sequence. The twenty cell 

sample with biotin and depletion has 1.3 times more counts for primer sequence. 

Analysis of sequencing reads 

Initial analysis of the sequencing reads was made using the whole transcriptome pipeline, 

integrated in the Bioscope package, from Applied Biosystems. Processing was split into three 

steps: Filtering (repetitive sequences, run chemistry, rRNA, tRNA, etc.), mapping against the 

reference genome (HG19) and mapping against exon-exon junctions (generated internally 

using refGene.gtf version hg19). Out of these results two files were generated. One 

containing all filtered reads and the other containing all reads mappable to the human 

genome and possible exon junctions. The file containing the human mappable reads were 

subsequently re-mapped to the reference genome with Bowtie. In the first analysis the 

number of unique genome reads, meaning reads mapping just to one position, were 
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considered.  To find out the number of transcriptome reads all genome mappable reads 

were aligned against all known exons in the genome as given by the EnsEMBL 56 gene 

annotation. EnsEMBL 56 contains about 47.507 genes, both known and predicted ones. Any 

read which overlapped by 1bp to a known exon was classified as a transcriptome read. 

Transcriptome reads were clustered into either unique mapping reads or reads mapping to 

one or more position within the exome, non-/unique reads. Table 5 shows counts for the 

different mapping results for the two one-cell samples, 1-1, 1-2 + Biotin and the two split 20 

cell sample, ½ 20, ½ 20 + Biotin. Exome read counts are shaded red. Comparing the 

percentage of genome mappable reads and sequencing run quality leads to the result that 

samples 1-2, which had a poor run quality, shows the smallest mappable rate of 13%. 

Sample ½ 20 which had the best run quality contains 80% of mappable genome reads (Figure 

5, Supplementary). 

Table 5 Absolute read counts for two one cell sample and a split 20 cell sample 

 

Diagram of sequencing reads 

The four samples taken together generated around 103 million reads. The one-cell sample 1-

1 yielded close to 26 million reads and the one-cell sample 1-2 reached 37 million reads. The 

split twenty-cell samples, ½ 20 and ½ 20 + Biotin lead to 17 and 23 million reads respectively. 

The most important part, the amount of transcriptome reads differs considerably between 

the samples.  Sample 1-1 has 1% transcriptome reads ( ~ 349.000), sample 1-2 + Biotin has 

about 4% ( ~ 1,6 million) reads, sample ½ 20 reached 51% ( 8.7 million) reads and sample ½ 

20 + Biotin contains 47% transcriptome reads ( 10.7 million). This number of transcriptome 

reads are based on the non-unique transcriptome reads. Further analyses were done with 

the non-/unique mapped reads on the transcriptome due to the fact that the non-unique 

count is based on gene duplication but still has to be considered as transcriptome. A 

noticeable difference between the one-cell samples and the twenty-cell samples is in the 

amount of filtered reads. Whereas for the one-cell samples around 40 to almost 50% were 

filtered out, the 20 cell sample had between 10% and 20% (Figure 11 / 12). The biotin 



 
   Results – Mirjam Blattner 

32  
 

treated samples, 1-2 contains a high number of non-mappable reads, 39 %. Sample ½ 20 + 

Biotin has about 5 % unknown sequences and sample 1-1 & ½ 20 had few non-mappable 

reads. 

 

 

Figure 11 Diagram of sequencing reads 

Four cDNA samples were sequenced on the ABI SOLiD platform: Two one cell samples, 1-1 and 1-2 + 

Biotin and one 20-cell sample which was split up after cDNA synthesis, ½ 20 and ½ 20 + Biotin. Shown 

is the distribution of reads mapped against the filter and the human genome. Transcriptome read 

counts analyzed by mapping against the exom of EnsEMBL 56 gene annotation via Bowtie. 

Filtered reads 

Before mapping the sequencing results to the human genome, reads were processed in a 

filtering step. In this step reads containing adaptor sequences (used in the sequencing 

chemistry), Sine, Line, Poly-N stretches, t & rRNA and E. coli were filtered out. Almost the 

half the reads of both one-cell samples were filtered out. Over 80% of the filtered reads 

mapped to E. coli, mainly to 16S and 23S RNA (Figure 12). Also the filtered reads of the 
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twenty-cell samples contain over 80% E. coli sequences, however, the total amount of 

filtered reads is just about the half compared to the single cells. 

 
Figure 12 Filtered reads of the four samples amplified with the µMACS SuperAmp Kit 

As a first analysis step all sequences are mapped to various filtering sequences like sequencing 

adaptors, rRNA or E. coli. The filtered reads are shown for samples, 1-1, 1-2 + Biotin, ½ 20 and ½ 20 + 

Biotin. X scale shows the various filters and the y scale the % part per filter to the total filtered reads. 

3.4 WT Ovation, One-Direct RNA Amplification System, NuGEN 

3.4.1 Gel electrophoresis 

 
To test the efficiency of the reverse transcriptase used in the kit, an advanced test with zero-

cells, twenty-cells and 500 pg RNA ladder was made. By simply looking at the 1.5% agarose 

gel it is difficult to identify differences between the patterns 

of the zero-cell sample, the 20 cells or the RNA ladder 

sample (Figure 13). In the lines of the RNA ladder no 

distinguishable band of the fragments can be detected. 

Purification of the amplified product does not lead to a big 

change in the smear.  

Figure 13 Gel electrophoresis of amplified cDNA with the One-

Direct RNA Amplification System 

Three reactions zero-cell, twenty-cells and 500 pg of RNA ladder 

were used to test the RT efficiency. Samples were analysed 

before (-) and after (+) purification. 
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3.4.2 Real time PCR & Spectrometric measurements 

Samples without amplification and transcribed with the in-house protocol were compared to 

samples which got transcribed and linearly amplified with the One-Direct RNA Amplification 

System from NuGEN. With this experiment reverse transcription efficiency and especially 

amplification rate was measured. In particular two one-cell samples and one 50 cell sample 

were transcribed into cDNA using the in-house RT protocol without any further 

amplification. One 50 cell sample was lysed but neither transcribed nor amplified. 

Furthermore, three one-cell samples and one further 50 cell sample were transcribed and 

amplified with the One-Direct RNA Amplification System from NuGEN. The resulting non-

amplified and amplified cDNA samples were quantified by real time PCR with the HPRT 

SybrGreen assay (Table 5). None of the samples transcribed into cDNA with the in-house 

protocol and no amplification showed a Cp under 40. This was also the case for the one-cell 

sample, 1-2, and the non-cell sample treated with the One-Direct RNA Amplification System 

from NuGEN.  Samples 1-1, 1-3 and the 50 cell sample (NuGEN) showed a Cp of between 28 

to 31 (Table 6 / Figure 14A). This meant an amplification factor of between 600 and 4000. 

Amplified samples were diluted 1:100 to avoid any inhibition of the real time PCR. The 50 

cell sample without reverse transcription and amplification had a Cp of 32.16 but a different 

melting peak than the transcribed and amplified cDNAs (Figure 14B). 

Table 6 Cp values of amplified product and spectromatic quantification 
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Figure 14 Amplification curves and melting peaks 

A: Amplification curves of three one cell samples and one 50 cell sample amplified with the One-

Direct RNA Amplification System from NuGEN together with one 50 cell sample without RT and 

amplification. qPCR was done with the Hprt SybrGreen assay. B: Melting peak of the 1-1,1-2,1-3, 50 

cell sample and the 50 cell sample without RT and amplification. 

3.4.3 Library Preparation 

Shearing  

All samples should be fragmented between 100 to maximal 200 bp for successful 

sequencing. This was done by the Covaris S2 system. Figure 15 shows sample 1-1 in the first 

lane without any shearing, in the second line with 5 minutes of shearing and in the third lane 

with 7 minutes. The unsheared product has as expected an average size of 300 to 500 bp.  

After 5 minutes of ultrasonic treatment of the single stranded linearly 

amplified product the main fragments have a length of approximately 

300-400 bp. After two more minutes most fragments have a size of 

around 200 bp. For the final library preparation sample 1-1, 1-2, 1-3 

and 50 were sheared for 8 minutes.  

 

 

 
Figure 15 Different shearing length 

A one cell sample was sheared for 0, 5 and 7 minutes. 
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Trial PCR 

In a pre-PCR step, termed trial PCR, the maximal number of PCR cycles is determined. This 

prevents the samples from getting over amplified.  Trial PCR was carried out in 17 cycles and 

after 11, 13, 15 and 17 cycles, samples were taken and analysed by performing gel 

electrophoresis. In sample 1-1, 1-2 and 1-3 amplified product can be detected after cycle 15. 

Sample 50 is not detectable before cycle 17 (Figure 16).In the first line per sample starting 

material was loaded onto the gel to compare the amplicon with it. Large scale PCR was 

finally carried out with 17 cycles. 

 

Figure 16 Trial PCR of the sequencing library 

PCR was done with a library of samples 1-1, 1-2, 1-3 and 50. After 11, 13, 15 and 17 cycles, samples 

of the reaction were taken and analysed by gel electrophoresis. In the first line per sample the 

starting material was loaded.  

 

3.4.4 Sequencing results 

Sequencing on the ABI platform was carried out after barcoded library preparation for the 

single stranded product of sample 1-1, 1-2, 1-3 and 50. A full sequencing slide was used for 

the four barcoded samples.  

Analysis of sequencing reads 

Mapping and initial analysis of the sequencing reads was as described under 3.2.2. 

Table 7 shows the counts for the different mapping results for the three one-cell samples 1-

1, 1-2, 1-3 and the 50 cell sample 50. Exome read counts are shaded red. 
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Table 7 Absolute read counts for three one cell samples and one 50 cell sample 

 

Diagram of sequencing reads 

The total amount of reads range between close to 70 million for the 50 cell and the 1-3 

samples, 105 million for sample 1-2 to 118 million reads for sample 1-1. Each of the four 

samples contained between ~30 to 40% filtered reads (Figure 17).  

Almost 100% of the filtered reads from sample 1-1 are library adaptors and for sample 1-2, 

1-3 and 50 between 50 to 60%. The remaining filtered reads are mainly SINE and Line reads. 

Bar plots of filtered sequences and their frequency are shown in figure 4, supplementary. 

The amount of transcriptome reads ranges from 26.5% for sample 1-2 to 16% for sample 1-3 

and 13.5% for sample 1-1. The sequencing results of the 50 cell sample contained just 2.5% 

of transcriptome reads. The number of transcriptome reads given includes also the non-

unique transcriptome reads. Further analyses were done with the non-unique mapped reads 

on the transcriptome due to the fact that the non-unique count is based on gene duplication 

but still has to be considered as transcriptome. Total numbers for all reads categories are 

listed in table 7. 
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Figure 17 Diagram of sequencing reads 
Four linearly amplified cDNA samples were sequenced on the ABI SOLiD platform: Three one cell 

samples, 1-1, 1-2, 1-3 and one 50 cell sample. Shown is the distribution of reads mapped against the 

filter and the human genome. Transcriptome red counts were analyzed by mapping against the 

exome of EnsEMBL 56 gene annotation via Bowtie. 

 

Repeat region reads & content of adenines 

To find the reason for the high number of random reads in genome (Figure 17), we mapped 

reads to repetitive sequences. The linearly amplified samples, NuGEN assay, have a 

significantly higher amount of repeat region reads than the exponentially amplified ones. 

This amount ranges from a minimal 32% for sample 1-1, 46% and 48% for sample 1-3 and 50 

up to 61% for sample 1-2, whereas with the Miltenyi assay the average percentage of 

repetitive reads is maximal 20 (Table 8). No correlation between the amount of 

transcriptome and repeat reads was found. 
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Table 8 Number and percentage of repeat region reads 

 

The stacking of repetitive sequence reads on top of each other, termed pile ups, requires 

high amplification & sequencing rate. Therefore, the Oligo (dT)-SPIA primer of NuGEN must 

somehow anneal close to these regions. To analyse this phenomenon the content of 8mers 

in the flanking regions of repetitive sequences were counted. A minimal coverage depth of 

40 reads was required to include a repeat region in the analyses. The chance of having a 

stretch of eight adenosines, Poly A (8), in the flanked regions of 133.358 analysed repetitive 

sequences is 67%. Under same conditions the chance to have a Poly T(8) is about 16%, 9% 

for Poly G(8) and 8% for Poly C(8) (Figure 18B). As a reference 1.000.000 20mers randomly 

located on the genome were checked for any content of Poly N(8) stretches.  The percentage 

rate of Poly A(8) and Poly C(8) is 26% and of Poly T(8) and Poly G(8) 24% (Figure 18A).  

 

Figure 18 Percentage distribution of Poly N(8) stretches in twentymres 

A: Randomly analysed 20mers all over the genome. B: 20mers flanking repeat regions with a higher 

sequencing coverage than 40. 
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3.5 Comparative analysis of exponential and linear amplification 

3.5.1 Gene expression analysis 

Sample complexity / detected genes 

The number of detected genes was taken as a measure for library complexity. The Ensembl 

56 gene set which included an annotated gene count of 47.507 is used as reference. Linear 

amplification yielded to a detected genes number of about 26.000 across all samples. 

Exponentially amplified samples resulted in a range of 15.000 and 23.000 detected genes. 

With the twenty-cell samples compared to the one-cell samples about 10 % more genes 

could been detected. Therefore, connection between higher input material and a more 

complex library can be made (Table 9). A threshold of three reads per gene had to be 

reached before a gene was counted as detected. 

Table 9 Number of detected genes with a coverage greater than three 

 

Rate of gene expression 

One way to analyse sequenced results to get more information about the strengths and 

weaknesses of a method is to compare the transcription levels per gene. Therefore all 

detected genes were clustered in three levels of transcription. In the group with low 

expressed genes with a read count of 10 - 49 and a normalized value of 1,236-3,558 were 

put together. Normalization was implemented as described in paragraph 2.2.10. Medium 

expressed genes were those with a read count of 50 – 499 and a normalization value 

between 3,559 and 35,778. Highly expressed genes have a read count greater than 500 and 

a normalization value higher than 35,778. Results from the linearly amplified samples were 

taken together and the mean with its deviation was calculated. This was done for the 

absolute read counts and the normalized values. The same calculation was carried out with 
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the exponentially amplified samples and all results were illustrated in one figure (figure 

19A/B). 

 

Figure 19 Amount of detected genes clustered at low, medium and high transcription rates 

Bars show the mean gene number per transcription rate and its deviation of all linearly amplified 

sample respectively exponentially amplified ones. Low, medium and highly abundant means 10-49, 

50-500 and more the 500 reads per gene for the total read count and 1,236, 3,557 – 35,778 and 

more then 35,779 for the normalized values.. A: Number of detected genes based on the total read 

numbers. B: Number of detected genes based on the normalized read numbers. 

 

In this case the deviation gives a first impression about the robustness and reproducibility of 

the methods. Normalization has a strong influence on the number of genes per expression 

level cluster as well as in the observed variance. The linearly amplified samples have a good 

homologousy in all three groups. The exponentially amplified samples show higher variance. 

This cannot be concluded when considering only read counts. The gene number for the 

normalized set, when compared to the non-normalised read counts, is higher for the lowly 

transcribed genes and lower for the medium transcribed genes. In the highly transcribed 

gene set the number of genes decreases for both amplification methods but more drastically 

for the linearly amplified ones. More genes in the low and medium abundant group were 

detected in the linearly amplified samples and less for the strong transcribed genes 

compared to the exponentially amplified one. Taken together these results indicate that the 

normalization lead to a shift of genes into the medium transcribed level, that the linear 
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amplification method seems to be more reproducible and leads to a higher number of 

detected genes except of the highly abundant ones. 

3.5.2 Strandedness of transcriptome sequencing results 

One major benefit along with the predicted decrease in bias is the possibility to also get the 

strand information of every transcript. Figure 21 shows the high concordance between the 

sequences of plus and minus cDNA strand reads. Also remarkably in figure 21, sample 1-1 

has fewer counts per genes which is due to the on average shorter fragment length. Linearly 

amplified samples in general show fewer read counts per gene and a wider range of values. 

But still the majority of genes express almost the same amount of plus and minus strands 

(22). For the NuGEN results it seems that the genome of the SW480 cells has a tendency to 

express more negative stranded transcripts. 

 

Figure 20 Correlation plots of the reads of plus and minus strands 

Shown are two exponentially amplified one-cell samples and the two split twenty cell sample. 
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Figure 21 Correlation plots of the reads of plus and minus strands 

Shown are three linearly amplified one-cell samples and one 50 cell sample. 

 

3.5.3 Coverage length distribution 

To access the length of the genes respective transcripts respectively genes that are covered 

by any read, the complete set of reads mapping to the transcriptome was taken and the 

length of coverage for each gene was computed. Due to non-strand specific sequencing the 

obtained data had to be corrected for bias due to overlapping genes which result in double 

counting for coverage calculation. The data set had been filtered as following: 1) genes 

covered by less than 5 reads were excluded from the analysis to reduce for background, 2) 

genes with a coverage length shorter than 35 bp's were excluded as the first 35 bases are 

high quality. For visualization of the distribution of the coverage length box-and-whisker 

diagrams are shown in figure 20 for the exponentially amplified samples and in figure 21 for 

the linearly amplified ones. Concatenating all exons per gene in the Ensembl 56 gene set the 

size of possible transcripts ranges from the smallest of 8 bp up to 620.154 bp´s. The median 
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is at around 1 kb and regarding to gel electrophoresis images the main transcripts range 

between 750 and 2.000 bp´s. The average covered gene length of the exponentially 

amplified samples is around 250 bp for the one cell sample and for the twenty cell sample 

between 300 and 400 bp´s. A connection between the reduced length and the amount of 

sequenced E. coli can be ruled out (Figure 20). The majority of sequenced transcripts have a 

length of up to 750 bp´s. Wherase the median length for exponetial amplified one-cell 

samples and twenty-cell sample were homologous the median length for the linearly 

amplified samples  do not show any consistency (Figure 21). Sample 1-1 has a median of 700, 

sample 1-2 and 1-3 around 350 and sample 50 250 bp´s. Sample 1-1 shows a length 

distribution between 300 and 1700 bp´s. Sample 1-2 and 1-3 between 200 and around 1000 

bp´s and the 50 cell sample between 200 and 450 bp´s. It has to be considered that 

according to the producer the average size of the amplicons is between 300 and 500 bp´s. 

No significant connection between the amount of repeat reads and the length of the 

sequenced transcripts can be drawn.  

 

Figure 22 Gene coverage length distribution for the exponentially amplified samples (Miltenyi) 
Shown are box-and-whisker diagrams for the covered gene length distribution for two one-cell 

samples 1-1, 1-2 and a split twenty-cell sample ½ 20, ½ 20 + Biotin as well as the total reads, 

transcriptome, repeats and E. coli reads per sample. 
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Figure 23 Gene coverage length distribution for the linearly amplified samples (NuGEN) 

Shown are box-and-whisker diagrams for the covered gene length distribution for three one-cell 

samples 1-1, 1-2,1-3 and a 50 cell sample as well as the total reads, transcriptome and repeats reads 

per sample. 
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4. Discussion 

The First hurdle in working with single cells is to be able to select or separate a single cell. 

Therefore we started with a simple cell dilution series down to a single cell. High 

reproducibility and an easy handling ability were characteristics of this technique. Our aim in 

future is to work with single circulating tumour cells. Therefore a different way of single cell 

extraction has to be found. First studies working with the FACS gave promising results. The 

amount of input material and the high risk of contamination with unknown cells lead us to 

search for a more personal handling method. Therefore, I developed a technique to suck up 

a single cell by using a mouth pipetting strategy. After a few trials this became a simple and 

robust way to select single cells although not in a high throughput manner. The risks of 

sucking up more than just one cell accidentally or losing the cell by transferring it into the 

reaction tube have to be considered. Staining strategy of the target cell would simplify this 

method due to better discrimination of the target cell from the other cells.  

The reverse transcription reaction is discussed to be not well understood and the most 

uncertain step in gene expression analysis [27]. Whereas oligo (dT) priming was found to 

lead to a 3´end bias and barely full length transcripts, random priming strategies on the 

other hand lead to 5´end bias. Either way the yield of cDNA especially full length cDNA for 

whichever strategy is used depends not on the assay but on the transcribed sequences [27]. 

Secondary and tertiary structure of the mRNA have a strong influence on transcriptase 

processivity and transcripts detected as being highly abundant may just be favoured by the 

reverse transcriptase because of certain sequence properties [2]. This bias should be stable 

and from the performed experiments a missing reproducibility of the reverse transcription 

was barely seen. In particular after fixation of the so called in-house protocol a stable 

transcription could be confirmed by real-time PCR even for low input preparations. This was 

the case not only within the experiments, where the same number of cells led to the same 

Cp´s, but also between different experiments. These advanced tests shows that in principle 

the reverse transcription step is not as uncertain as feared. A constant worklflow of 

performing the reaction, RNase free consumables, efficient protocol and a concentrated and 

speedy workflow are the guidelines which all need to be fulfilled. So far the reverse 

transcription and amplification kits used have not been combined with the in-house revere 

transcription protocol. 
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Although using a poly-dT priming approach for cDNA synthesis a focus of the study was to 

achieve a complete transcript coverage if possible. As shown in figure 6, with three tested RT 

enzymes similar results were achieved. Up to 2 kb fragments could be detected in all three 

assays. This disproves the assumption that oligo (dT) priming only yields short fragment 

cDNA´s. Tests using a commercially available poly-A RNA ladder between 100bp and 2 kb 

fragments showed that short transcripts down to 100 bp did not show a noticeably stronger 

transcription rate, which also questions the predicted strong 3´end mRNA bias. This could be 

further proven by setting up comparative real time assays located in an increasing distance 

starting close to the 5´end of the cDNA. Unfortunately the fragment sequences of the ladder 

were not publicly accessible. However, the sequencing data indicates that internal Poly A 

stretches might be induced if poly-dT oligos are used, which results in truncated fragments 

due to random priming. This also adds ‘sequence noise’ to the data and a strong influence of 

the oligo (dT) concentration on the reverse transcription reaction was shown (Figure 7A). At 

reduced oligo dT primer concentration a higher yield of cDNA was quantified via real time 

PCR. Increasing the primer concentration may lead to an annealing inhibition of primer and 

enzymes as well as the chance of annealing to internal sequences which would lead to 

truncated cDNA templates. Another explanation given by Stahlberg et al for the increased 

cDNA outcome could be the observation that less primer concentration results in a higher 

number of truncated fragments, generated by internal poly A priming compared to the 

3´end fragments [27]. The HPRT Syber green assay used has a distance of almost 1 kb to the 

mRNA 3´end. No poly A stretches greater than 8 can be found in between. Therefore the 

increasing cDNA product is not based on more internal priming. 

Random priming strategies are always considered to generate more full length coverage of 

transcripts than poly A based priming strategies. This would mean that in our study the assay 

based on exponential amplification, Miltenyi, would yield more full length covered 

transcripts than the linearly amplified assay which is predicted to generate between 300 to 

500 bp´s long amplified cDNAs. Due to the lack of visualization methods for low input 

material reverse transcription could not be evaluated in completely separation from 

amplification. Therefore the covered read length distribution of the sequenced genes was 

taken as a way to analyze the initially transcribed cDNA gene covering length. The maximum 

length of the major fragments of the exponentially amplified cDNA samples is around 750 

bp. A coverae length of up to 2 kp or more indicates that before the amplification initial 
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reverse transcription must have led to relatively long fragments of cDNA. Differences in the 

pattern in particular the high degree of short coverage length for some samples might have 

been caused more likely by amplification than by reverse transcription. It seems that the 

concentration of detected E. coli transcripts influences the length of the sequenced 

transcipts. More E. coli reads means less transcription length. Again the question is whether 

E. coli RNA inhibits the maintenance of full length human cDNA or if the E. coli cDNA 

transcripts and the short human cDNA transcripts lead to a loss of long products by 

preferred amplification.  

DNA polymerase used in the linear amplification kit produces fragments between 300 to 500 

bp´s even though the original fragment may have been longer. Longer fragments than 

expected can be seen in the covered length distribution of the sequencing reads which have 

the maximum length of the majority reads at around 1 kb. One one-cell sample even got 

closer to 2 kb. Only the 50 cell sample shows the expected length distribution.  

Addressing reproducibility one has to be aware of naturally occurring biological cell to cell 

variability, which is for example caused by the cell cycle stage having direct impact on the 

mRNA content of the cell. Besides the methodological challenge of single cell transcriptome 

analysis this may be one of the limiting factors for a homogeneous transcriptome analysis of 

a single cell [12] and can be addressed only by working with high numbers of replicates.  To 

reduce cell-to-cell variability comparability studies were firstly carreid out by working with 

nocodazole treated cells. This leads to a G2/M phase arrest of the cells because 

microtubules cannot polymerise and therefore they cannot enter mitosis [61]. Later test 

were done on biologically more relevant cells, non-nocodazole treated SW480 cells, a colon 

cancer cell line. It can be argued whether we took this step too early because the reason for 

gene expression variations cannot fully be distinguished between methodical issues and 

possible cell cycle stage variations.  

About 95 – 98% of the RNA in a cell is ribosomal RNA. For transcriptome analysis only 1-3% 

mRNA has to be isolated from the rest to not waste sequencing capacity.  As mentioned in 

the introduction there are several ways to avoid rRNA such as depletion approaches, oligo 

(dT) priming strategies or oligo (dT) based enrichment followed by a random priming 

strategy. The linear amplification assay used is based just on oligo (dT) selection via magnetic 

beads as well as oligo (dT) priming strategy. Random priming strategy cannot be carried out 

because the washing step would therefore have to have been made before reverse 
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transcription. High risk of RNA digestion while washing is the limiting factor for this step. The 

exponential amplification assay by Miltenyi includes a strong oligo (dT) selection with 

random priming strategy thereafter. Because of the specifically developed µMacs columns 

an easy handling and rapid washing step before reverse transcription can be carried out 

(2.2.3). With both strategies selection to messenger RNA was successful so none or 

negligible ribosomal RNA was sequenced. 

Three amplification protocols were tested, modified in the process of testing and finally 

completely established in the lab. All have different advantages and disadvantages. 

Exponential amplification carried out with the ABI protocol as well as with the Miltenyi 

protocol lead to the highest observed amplification rates of 103 up to 106. The ABI PCR 

protocol contains two PCR steps. First an amplification of 20 cycles is performed and after 

purification, a portion of this cDNA was further amplified by nine cycles of PCR. In figure 8B it 

is noticeable that after the second round of amplification no differences in the Cp of the five 

cell sample and the 10 cell sample can be detected. A likely explanation would be that the 10 

cell sample already reached the plateau phase and therefore the five cell sample finally kept 

up with the 10 cell sample. Therefore, amplification versus loss of dynamic range is a trade 

off for PCR based amplification approaches. The last cycles before the plateau phase are 

known to be the cycles inducing strong bias as described in the introduction.  

The Miltenyi exponential amplification protocol includes a PCR step of 40 cycles. A really 

high amplification rate of at least 106 is the result. Unfortunately this most likely also results 

in the loss of long cDNA fragments due to preferred amplification of shorter fragments. This 

problem could be overcome by reducing cycle number and performing amplification by 

emulsion PCR to reduce the number of template molecules per reaction vessel and therefore 

limit competition between short and long fragments. An experimental PCR containing a one-

cell sample cDNA and known spiked-in fragments of e.g. arabidopsis with various length, 

concentrations and sequences could provide more substance to this hypothesis. In contrast 

to this the linearly amplified assay leads to an increase of the input material in a range of 

1000 to 4000 fold. The theory that by using linearly amplified methods the amplification rate 

is not big enough or that at least a second round of amplification would need to be 

performed is not the case from my results.  

A further important issue in single cell analysis is the potential risk and dramatic impact of 

contamination. A single cell contains about 1-3 pg mRNA. At this level of input material every 
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single RNA/DNA molecule coming from the environment will be present at a high percentage 

of the whole sample material. That this is of particular importance for the samples with 

lowest input amounts was shown with the E coli contamination of the exponentially 

amplified samples. The percentage of E. coli contamination for the two single cell samples of 

40% decreases down to 20% when just a twenty times higher input material is used. It can 

be thought of as a competition situation between the E. coli strands and the small human 

mRNA templates in the reverse transcription. The majority of the identified E. coli sequences 

are 16S and 23S RNA. This means that the contamination must occur during reverse 

transcription. Indeed in various RT enzymes E. coli 16S RNA could have been detected by real 

time PCR. Unfortunately I have no satisfactory answer as to why this issue is not seen with 

the linearly amplified samples and also not in the published single cell paper based on the 

ABI protocol [62]. Initial changes in the Miltenyi protocol to a reverse transcription with 

single Oligo dT priming did not lead to a drastic reduction of E. coli concentration after 

amplification (data not shown). This needs to be verified. Possible correlation between the 

high number of PCR cycles and the strong contamination has to be checked as well.  

Apart of sequences coming clearly from other species and are therefore contaminants, the 

internal poly (A) priming became a working hypothesis in this study to explain the 

phenomenon of strong genomic repeat region abundance of 40 to 60% for samples linearly 

amplified with the NuGEN assay. This was proven by counting  homopolymer stretches and 

in particular poly-A stretches in flanking regions of what we termed in this work 'genomic 

contamination regions' (figure 18). These regions are characterized by high counts of low 

complexity reads. This observation was also made in a recently published single cell mRNA 

sequencing by Cloonan et a.l who received about 20% repeat region reads [15]. We are not 

fully sure why we see such a high number of genomic repeat regions in only one out of the 

four samples amplified with the exponentially amplification based kit. The sufficient washing 

step before reverse transcription in this kit may be an explanation. It seems like internal 

priming sites having a competing position with the polyA tail of mRNAs because a high 

number or repeat reads are correlated with a low number of transcriptome reads. Nam et al. 

were able to show that a decrease of internal priming can be achieved by using anchored 

oligo (dT) primers [63]. 

Additional to the cDNA synthesis and amplification part in the workflow certain steps during 

NGS sequencing library preparation might have influence on final results as well. The 
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fragmentation of samples is known to be a step which introduces GC content dependent 

bias. Methods, especially those based on ultrasonic shearing have poor efficiency and are 

often non-isothermal. Figure 15 showing the fragmentation results after 5 and 7 minutes of 

ultrasonic treatment support this idea. Even after 7 minutes of shearing a wide smear is seen 

and sizes of fragments are too long. But further extension of the duration of ultrasonication 

increases the chance of losing shorter fragments. The first gel electrophoresis band per 

sample in Figure 16 shows the sheared non-amplified samples. Even though they were all 

treated in the same manner the results varied strongly and even after 8 minutes of 

ultrasonication the fragments are too long, which means a high loss of material in the size 

selection step. A possible reason for the poor efficiency especially when compared with the 

linearly amplified samples would be that the amplified product is single stranded leading to 

secondary structures avoiding efficient fragmentation. First experiments working with uracil-

DNA glycosylase cleavage on every position containing a uracil were made. Uracil was 

incorporated during reverse transcription. Higher concentration of UTPs leads to a decrease 

of fragment length. Unfortunately the first experiments did not lead to expected results. 

Further studies have to be carried out with this method of fragmentation. 

The loss of cDNA fragments during library preparation cannot be completely avoided. The 

hybridization step of the adaptor P1 and P2 with the templates as well as the following 

ligation reactions are known to be inefficient. As seen in the sequencing results of the filter 

step of the linearly amplified samples (figure 4, supplementary) a high percentage of adaptor 

sequences was detected. Analysis of these filtered reads showed that cross-hybridised 

products of P1 and P2 were generated and sequenced. Changing hybridization conditions 

and possible amine modification of adaptor have to be discussed to reduce the amount of 

adaptor dimerization and concatermerization.  

Even though high throughput second generation sequencing is still drastically reducing the 

cost for whole transcriptome analysis, sample and sequencing library preparation should be 

proven before sequencing. Two steps in the workflow of single cell transcriptome analysis 

seem to be extremely important. 1) Reverse transcription and 2) Amplification. As seen in 

table 2 and figure 8 either no signal or really poor quality signal was achieved with real time 

PCR even for a highly expressed gene like HPRT. Besides this, it remains very difficult to take 

quality control aliquots after reverse transcription in both of the methods.  Solutions to this 

issue have to be found. This doesn't just apply to the sample quality but also to address the 
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question of whether the full length cDNA ever got transcribed or if the PCR is the reason for 

loss, as discussed above. Discovering the sample complexity after amplification is not trivial 

but it might worth trying high resolution melt analysis for the whole sample[64].  

Beside the sample quality, the quality of a sequencing run and the amount of resulting 

information are dependent on various factors. An obvious one is the influence of the quality 

of the sequencing workflow itself. Compared to systems such as the market leader Illumina, 

the handling of the SOLiD platform is not trivial. Bad bead deposition, multi template beads 

or insufficient emulsion PCR (leading to reduction in the amount of templates per beads) 

have a major influence on reproducible results of the SOLiD platform. Our two exponentially 

amplified one-cell samples, and the two split twenty cell samples were loaded on one 

sequencing slide. The four samples were not labeld with a barcode. Therefore every sample 

could be tracked for their respective sequencing quality. The ratio of usable beads versus 

non-usable beads per cycle gives the first indication of quality. Figure 5, supplementary, 

already shows the connection between the ratio of ‘good’ beads to ‘bad’ beads and the 

percentage of mappable reads. There is a slight tendency that the samples containing biotin 

labeld primer and treated with streptavidin beads have a greater number of non-usable 

beads. The four linearly amplified samples were barcoded and loaded on one full slide. 

Therefore the sequencing quality per sample could not be checked. A general ratio of good 

to bad beads on the full slide is given in figure 6, supplementary.  

However, there are still differences in the mappability of every sample. Sample 1-2 yielded 

85% genomic mapped reads, sample 1-3 64%, sample 1-1 45% and sample 50 just 57%. In 

general the library quality is the key for the quality of a sequencing experiment (pers. 

comm., Dr. Andreas Dahl) For one sample it is relatively clear that the low percentage of 

mappability is due to a suboptimal bead preparation process. However, whether the reason 

for low mappability is the library preparation process itself or the cDNA amplification can not 

clearly be explained without any repetition. Due to the newly developed adaptor design for 

the single stranded DNA only limited data is available for comparison. The new adaptor 

design was required to maintain the feature of strand specific sequencing for the linear 

amplification, one of the major advantages of this methodology,  

The paper published in 2009 by Tang et al. was the first reference to get an idea about the 

amount of transcriptome reads which yield from a single cell experiment. In this study the 

same protocol i was initially working with was carried out and the sequencing also took place 
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on the ABI SOLiD platform. Therefore our results were roughly comparable. However, it has 

to be mentioned that they were working with blastomeres and oocytes which are much 

bigger cells than normal tissue cells. Therefore our single cell conditions were even more 

challenging. The seven analysed cells resulted in 26 to 45% transcriptome reads except for 

the splice junction reads which we did not analyse. Exponentially amplified one-cell samples 

which have almost the same amplification protocol lead to transcriptome output of 1-4%. 

Much less efficient than described in the paper. But the analysed 20-cell sample, which is 

more comparable to blastomeres also yielded around 50% transcriptome reads. The high 

amount of filtered E. coli reads which took up almost 50% of the sequencing power may be 

an explanation for the low amount of transcriptome reads for the single cells (Table 5). The 

linearly amplified samples have the same number of genomic mapped reads than described 

in the paper, around 30-50% but again the transcriptome counts are much less, 2,5 – 26%. 

The reason for this is the extremely high number of sequenced repetitive reads.  

Another way to measure library complexity is to calculate the number of detected genes. 

Even though samples were barely transcribed, such as the exponentially amplified 1-1 

sample, the amount of detected genes is still 16.000 genes. This means that even low read 

counts can have a high complexity. The linearly amplified samples have in general a higher 

number of detected genes despite the amount of transcriptome reads being less compared 

to the exponential amplification based method (Table 9).  In my view this could be evidence 

that linear amplification contains much less bias and cDNA gets amplified independently of 

the sequence and especially the length. New analysis sorted by the amounts of reads 

grouped into increasing gene - exon length should lead to the same mean amount of counts 

whereas with the exponentially amplified reads genes with longer transcripts should be less 

represented. Again this could also be tested by known spiked in sequences of different 

length and quantities.  

In a second analysis genes were clustered into three expression groups: low, medium and 

high. Lowly expressed genes had read counts per gene between 3 and 49, medium ones 

between 50-499 and highly expressed genes having at least 500 counts. Working with the 

normalized gene expression results in that most genes have a low transcription rate (Figure 

19). These results confirm what Klein et al. published about a single micrometastatic cell 

[65]. Also Hastie and Bishop showed that the lowly expressed genes are the majority and the 

strongly transcribed genes are quite rare.  For the mean amount of genes clustered into the 
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three abundant classes the average between all four samples per method was calculated. 

Therefore the deviation per group is an index for methodical reproducibility. As already seen 

in the comparable amount of detected genes the linearly amplified samples have remarkably 

fewer deviations. This indicates again a more stable amplification (Figure 19). Another 

benefit of linearly amplified samples is the strand information which was predicted to be 

maintained.  Indeed compared to the exponentially amplified samples the NuGEN 

correlation plots display a wider range of values which indicates a larger discrepancy 

between plus and minus strand but only for some genes (Figure 20). Therefore it can be said 

that for at least these four samples limited transcription orientation was achieved. Reasons 

might be false positive counts due to internal Poly A priming during cDNA synthesis.  

Furthermore hairpin loops of the mRNA which might lead to a reverse amplification have to 

be discussed and new experiments are required to test these. 

I stopped working with the whole transcriptome preparation of a Single Cell using the ABI 

protocol because of non-homogeneous reverse transcription and amplification results. The 

time it takes to extract a single cell and complete the whole protocol is also too long and 

reduces therefore the chance of highly reproducible results. Therefore we decided to focus 

on the µMACS SuperAmp Kit from Miltenyi as an example of exponential amplification of 

single cells. The protocol procedure is based on the same idea as the ABI protocol but 

because of the described µMacs column technology, better purification steps and better 

handling in general is provided. The amount of transcriptome reads for the twenty cell 

samples was surprisingly high and the concordance of the plus and minus strand was really 

high. Never the less, read out for full length transcripts has to be increased by better reverse 

transcription efficiency and/or improved PCR conditions. The issue with E. coli 

contamination should be negligible when using for example special enzyme pre-treatment. 

The transcriptome read outcome of WT Ovation, One-Direct RNA Amplification System from 

NuGEN was fairly low even for the 50 cell sample. Amplification rate was as efficient as 

predicted and samples were much more homologousous then exponentially amplified ones. 

Higher amounts of detected genes could be also an indicator for a more sensitive assay. The 

expected maintenance of strand information did not materialise which requires further 

investigation.  

As it will not be possible to achieve an amplification method for single cell transcriptome 

analysis without any bias, scientific development has to focus on methods with hopefully 
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moderate but, more importantly, reproducible bias. This study has given insights into the 

issues related to the investigation of single cell transcriptomes. Two promising methods of 

single cell transcriptome amplification could be identified and investigated using next 

generation sequencing. 
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7. Supplementary 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Table 1 Sequences of used primers 

Figure 1 Primer dimerization of UP1 – UP2 / UPA – UP2 

Monitoring of different primer combination and its dimerization with (+) or without (-) 

amplification and with (+) or without (-) DNA polymerase. 
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Figure 2 Alignment of Primer UP1 with UP2 
To visualise homology and possible resulting primer dimerization between UP1 and UP2 
alignments with one base shift per line were carried out computationally. 
 

Figure 3 Amplification curve and melting peak for human cDNA Hprt amplicon 
A: Amplification curves of the Hprt SybrGReen with human cDNA, from HeLa cells, and 
genomicDNA (gDNA), HeLa, as well as without any template control (NTC). B: Melting 
peak of cDNA, HeLa, and genomicDNA (gDNA), HeLa, as well as of the non template 
control (NTC) 

A 
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Figure 5 Good (blue) and bad (green) beads derivation for the exponentially amplified 

samples  

A 

B 

Figure 4 Filtered reads of the four samples amplified with One-Direct RNA 

Amplification System, NuGEN  

As a first analysis step all sequences are mapped to various filtering sequences 

such as sequencing adaptors, rRNA or Poly-N. The filtered out reads are shown for 

samples, 1-1, 1-2 + 1-2 and 50.  

 



 
   Supplementary – Mirjam Blattner 

63  
 

 

 
 
 
Figure 6 Good (blue) and bad (green) beads derivation for the linearly amplified samples  
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