369 research outputs found

    Exploring Dehazing Methods For Remote Sensing Imagery: A Review

    Get PDF
    Remote sensing imagery plays a pivotal role in numerous applications, from environmental monitoring to disaster management. However, the occurrence of haze which is atmospheric often reduces the quality and interpretability of these images.  Atmospheric Haze reduces visibility of remote sensed images by reducing contrast and causing colour distortions.  Dehazing techniques are employed to improve the perceptibility and clarity affected images by haze. In this review, we delve into the realm of dehazing methods specifically tailored for remote sensing imagery, aiming to shed light on their efficacy and applicability. We focus on a comprehensive comparison of four prominent dehazing techniques: Histogram Equalization (HE), Light Channel Prior (LCP), Contrast Enhancement Filters (CEF), and Dark Channel Prior (DCP). These methods, representing a spectrum of approaches, are evaluated based on key quality metrics of images, including PSNR, MSE and SSIM

    A Review of Remote Sensing Image Dehazing.

    Full text link
    Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated

    Vision Transformers for Single Image Dehazing

    Full text link
    Image dehazing is a representative low-level vision task that estimates latent haze-free images from hazy images. In recent years, convolutional neural network-based methods have dominated image dehazing. However, vision Transformers, which has recently made a breakthrough in high-level vision tasks, has not brought new dimensions to image dehazing. We start with the popular Swin Transformer and find that several of its key designs are unsuitable for image dehazing. To this end, we propose DehazeFormer, which consists of various improvements, such as the modified normalization layer, activation function, and spatial information aggregation scheme. We train multiple variants of DehazeFormer on various datasets to demonstrate its effectiveness. Specifically, on the most frequently used SOTS indoor set, our small model outperforms FFA-Net with only 25% #Param and 5% computational cost. To the best of our knowledge, our large model is the first method with the PSNR over 40 dB on the SOTS indoor set, dramatically outperforming the previous state-of-the-art methods. We also collect a large-scale realistic remote sensing dehazing dataset for evaluating the method's capability to remove highly non-homogeneous haze

    Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing

    Full text link
    Recently, CNN based end-to-end deep learning methods achieve superiority in Image Dehazing but they tend to fail drastically in Non-homogeneous dehazing. Apart from that, existing popular Multi-scale approaches are runtime intensive and memory inefficient. In this context, we proposed a fast Deep Multi-patch Hierarchical Network to restore Non-homogeneous hazed images by aggregating features from multiple image patches from different spatial sections of the hazed image with fewer number of network parameters. Our proposed method is quite robust for different environments with various density of the haze or fog in the scene and very lightweight as the total size of the model is around 21.7 MB. It also provides faster runtime compared to current multi-scale methods with an average runtime of 0.0145s to process 1200x1600 HD quality image. Finally, we show the superiority of this network on Dense Haze Removal to other state-of-the-art models.Comment: CVPR Workshops Proceedings 202

    Rich Feature Distillation with Feature Affinity Module for Efficient Image Dehazing

    Full text link
    Single-image haze removal is a long-standing hurdle for computer vision applications. Several works have been focused on transferring advances from image classification, detection, and segmentation to the niche of image dehazing, primarily focusing on contrastive learning and knowledge distillation. However, these approaches prove computationally expensive, raising concern regarding their applicability to on-the-edge use-cases. This work introduces a simple, lightweight, and efficient framework for single-image haze removal, exploiting rich "dark-knowledge" information from a lightweight pre-trained super-resolution model via the notion of heterogeneous knowledge distillation. We designed a feature affinity module to maximize the flow of rich feature semantics from the super-resolution teacher to the student dehazing network. In order to evaluate the efficacy of our proposed framework, its performance as a plug-and-play setup to a baseline model is examined. Our experiments are carried out on the RESIDE-Standard dataset to demonstrate the robustness of our framework to the synthetic and real-world domains. The extensive qualitative and quantitative results provided establish the effectiveness of the framework, achieving gains of upto 15\% (PSNR) while reducing the model size by ∼\sim20 times.Comment: Preprint version. Accepted at Opti
    • …
    corecore