3 research outputs found

    Multipath estimation based on modified ε-constrained rank-based differential evolution with minimum error entropy

    Get PDF
    Multipath is one of the dominant error sources for high-precision positioning systems, such as global navigation satellite systems (GNSS). The minimum mean square error (MSE) criterion is usually employed for multipath estimation under the assumption of Gaussian noise. For non-Gaussian noise as appeared in most practical applications, alternative solutions are required for multipath estimation. In this work, a multipath estimation algorithm is proposed based on the minimum error entropy (MEE) criterion under Gaussian or non-Gaussian noises. A key advantage of using MEE is that it can minimize the randomness of error signals, however, the shift-invariance characteristics in MEE may lead to a bias of the estimation result. To mitigate such a bias, an improved estimation strategy is proposed by integrating the second-order central moment of the estimation error together with the prior information of multipath parameters as a constraint. The multipath estimation problem is thus formulated as a constrained optimization problem. A modified ε-constrained rank-based differential evolution (εRDE) algorithm is developed to find the optimal solution. The effectiveness of the proposed algorithm, in terms of reducing the multipath estimation error and minimizing the randomness in the error signal, has been examined through case studies with Gaussian and non-Gaussian noises

    Single Neuron Stochastic Predictive PID Control Algorithm for Nonlinear and Non-Gaussian Systems Using the Survival Information Potential Criterion

    No full text
    This paper presents a novel stochastic predictive tracking control strategy for nonlinear and non-Gaussian stochastic systems based on the single neuron controller structure in the framework of information theory. Firstly, in order to characterize the randomness of the control system, survival information potential (SIP), instead of entropy, is adopted to formulate the performance index, which is not shift-invariant, i.e., its value varies with the change of the distribution location. Then, the optimal weights of the single neuron controller can be obtained by minimizing the presented SIP based predictive control criterion. Furthermore, mean-square convergence of the proposed control algorithm is also analyzed from the energy conservation perspective. Finally, a numerical example is given to show the effectiveness of the proposed method
    corecore