7,930 research outputs found

    A Latent Parameter Node-Centric Model for Spatial Networks

    Get PDF
    Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For example, many social networks attach geo-location information to each user, allowing the study of not only topological interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances are associated with a cost, which may subtly influence the topology of the network. However, the cost function over distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes involved. For example, a node's specific surroundings (e.g. network structure and node density) may make it more likely to form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to each node which represents a node's spatial reach. These variables are inferred from the network structure using a Markov Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial networks (e.g. transportation, biological, infrastructure, and social). We apply our model to the task of link prediction and achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see much larger improvements over previous models

    Inference of Sparse Networks with Unobserved Variables. Application to Gene Regulatory Networks

    Full text link
    Networks are a unifying framework for modeling complex systems and network inference problems are frequently encountered in many fields. Here, I develop and apply a generative approach to network inference (RCweb) for the case when the network is sparse and the latent (not observed) variables affect the observed ones. From all possible factor analysis (FA) decompositions explaining the variance in the data, RCweb selects the FA decomposition that is consistent with a sparse underlying network. The sparsity constraint is imposed by a novel method that significantly outperforms (in terms of accuracy, robustness to noise, complexity scaling, and computational efficiency) Bayesian methods and MLE methods using l1 norm relaxation such as K-SVD and l1--based sparse principle component analysis (PCA). Results from simulated models demonstrate that RCweb recovers exactly the model structures for sparsity as low (as non-sparse) as 50% and with ratio of unobserved to observed variables as high as 2. RCweb is robust to noise, with gradual decrease in the parameter ranges as the noise level increases.Comment: 8 pages, 5 figure

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Causal inference for social network data

    Full text link
    We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic result is the first to allow for dependence of each observation on a growing number of other units as sample size increases. While previous methods have generally implicitly focused on one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties, and for dependence due to latent similarities among nodes sharing ties. We describe estimation and inference for new causal effects that are specifically of interest in social network settings, such as interventions on network ties and network structure. Using our methods to reanalyze the Framingham Heart Study data used in one of the most influential and controversial causal analyses of social network data, we find that after accounting for network structure there is no evidence for the causal effects claimed in the original paper

    Spectral partitioning of time-varying networks with unobserved edges

    Full text link
    We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this fashion, the filtered graph signals can be interpreted as defined on a time-varying network. We model each of the underlying network realizations as generated by an independent draw from a latent stochastic blockmodel (SBM). To infer the partition of the latent SBM, we propose a simple spectral algorithm for which we provide a theoretical analysis and establish consistency guarantees for the recovery. We illustrate our results using numerical experiments on synthetic and real data, highlighting the efficacy of our approach.Comment: 5 pages, 2 figure

    Joint estimation of multiple related biological networks

    Full text link
    Graphical models are widely used to make inferences concerning interplay in multivariate systems. In many applications, data are collected from multiple related but nonidentical units whose underlying networks may differ but are likely to share features. Here we present a hierarchical Bayesian formulation for joint estimation of multiple networks in this nonidentically distributed setting. The approach is general: given a suitable class of graphical models, it uses an exchangeability assumption on networks to provide a corresponding joint formulation. Motivated by emerging experimental designs in molecular biology, we focus on time-course data with interventions, using dynamic Bayesian networks as the graphical models. We introduce a computationally efficient, deterministic algorithm for exact joint inference in this setting. We provide an upper bound on the gains that joint estimation offers relative to separate estimation for each network and empirical results that support and extend the theory, including an extensive simulation study and an application to proteomic data from human cancer cell lines. Finally, we describe approximations that are still more computationally efficient than the exact algorithm and that also demonstrate good empirical performance.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS761 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variational Inference for Stochastic Block Models from Sampled Data

    Full text link
    This paper deals with non-observed dyads during the sampling of a network and consecutive issues in the inference of the Stochastic Block Model (SBM). We review sampling designs and recover Missing At Random (MAR) and Not Missing At Random (NMAR) conditions for the SBM. We introduce variants of the variational EM algorithm for inferring the SBM under various sampling designs (MAR and NMAR) all available as an R package. Model selection criteria based on Integrated Classification Likelihood are derived for selecting both the number of blocks and the sampling design. We investigate the accuracy and the range of applicability of these algorithms with simulations. We explore two real-world networks from ethnology (seed circulation network) and biology (protein-protein interaction network), where the interpretations considerably depends on the sampling designs considered
    • …
    corecore