1,034 research outputs found

    O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images

    Full text link
    Haze removal or dehazing is a challenging ill-posed problem that has drawn a significant attention in the last few years. Despite this growing interest, the scientific community is still lacking a reference dataset to evaluate objectively and quantitatively the performance of proposed dehazing methods. The few datasets that are currently considered, both for assessment and training of learning-based dehazing techniques, exclusively rely on synthetic hazy images. To address this limitation, we introduce the first outdoor scenes database (named O-HAZE) composed of pairs of real hazy and corresponding haze-free images. In practice, hazy images have been captured in presence of real haze, generated by professional haze machines, and OHAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. To illustrate its usefulness, O-HAZE is used to compare a representative set of state-of-the-art dehazing techniques, using traditional image quality metrics such as PSNR, SSIM and CIEDE2000. This reveals the limitations of current techniques, and questions some of their underlying assumptions.Comment: arXiv admin note: text overlap with arXiv:1804.0509

    Joint Transmission Map Estimation and Dehazing using Deep Networks

    Full text link
    Single image haze removal is an extremely challenging problem due to its inherent ill-posed nature. Several prior-based and learning-based methods have been proposed in the literature to solve this problem and they have achieved superior results. However, most of the existing methods assume constant atmospheric light model and tend to follow a two-step procedure involving prior-based methods for estimating transmission map followed by calculation of dehazed image using the closed form solution. In this paper, we relax the constant atmospheric light assumption and propose a novel unified single image dehazing network that jointly estimates the transmission map and performs dehazing. In other words, our new approach provides an end-to-end learning framework, where the inherent transmission map and dehazed result are learned directly from the loss function. Extensive experiments on synthetic and real datasets with challenging hazy images demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods.Comment: This paper has been accepted in IEEE-TCSV

    Contrast Enhancement in Poor Visibility Conditions Using Guided Filtering

    Get PDF
    In this paper, extraction of atmospheric veil is proposed to enhance the contrast of the images captured under poor visibility conditions. The method based on guided filtering can accurately recover hidden edges, maintain structural similarity (SSIM) to input image and it is effective for both color and gray level images. The proposed algorithm works without prior information about the scene and its complexity is linear function of the input image size. Experimental comparisons with state of the art algorithms demonstrate that our approach can significantly enhance the contrast and restore the visibility in fine details

    Unsupervised Single Image Dehazing Using Dark Channel Prior Loss

    Full text link
    Single image dehazing is a critical stage in many modern-day autonomous vision applications. Early prior-based methods often involved a time-consuming minimization of a hand-crafted energy function. Recent learning-based approaches utilize the representational power of deep neural networks (DNNs) to learn the underlying transformation between hazy and clear images. Due to inherent limitations in collecting matching clear and hazy images, these methods resort to training on synthetic data; constructed from indoor images and corresponding depth information. This may result in a possible domain shift when treating outdoor scenes. We propose a completely unsupervised method of training via minimization of the well-known, Dark Channel Prior (DCP) energy function. Instead of feeding the network with synthetic data, we solely use real-world outdoor images and tune the network's parameters by directly minimizing the DCP. Although our "Deep DCP" technique can be regarded as a fast approximator of DCP, it actually improves its results significantly. This suggests an additional regularization obtained via the network and learning process. Experiments show that our method performs on par with large-scale supervised methods

    A Cascaded Convolutional Neural Network for Single Image Dehazing

    Full text link
    Images captured under outdoor scenes usually suffer from low contrast and limited visibility due to suspended atmospheric particles, which directly affects the quality of photos. Despite numerous image dehazing methods have been proposed, effective hazy image restoration remains a challenging problem. Existing learning-based methods usually predict the medium transmission by Convolutional Neural Networks (CNNs), but ignore the key global atmospheric light. Different from previous learning-based methods, we propose a flexible cascaded CNN for single hazy image restoration, which considers the medium transmission and global atmospheric light jointly by two task-driven subnetworks. Specifically, the medium transmission estimation subnetwork is inspired by the densely connected CNN while the global atmospheric light estimation subnetwork is a light-weight CNN. Besides, these two subnetworks are cascaded by sharing the common features. Finally, with the estimated model parameters, the haze-free image is obtained by the atmospheric scattering model inversion, which achieves more accurate and effective restoration performance. Qualitatively and quantitatively experimental results on the synthetic and real-world hazy images demonstrate that the proposed method effectively removes haze from such images, and outperforms several state-of-the-art dehazing methods.Comment: This manuscript is accepted by IEEE ACCES

    Single Image Dehazing through Improved Atmospheric Light Estimation

    Full text link
    Image contrast enhancement for outdoor vision is important for smart car auxiliary transport systems. The video frames captured in poor weather conditions are often characterized by poor visibility. Most image dehazing algorithms consider to use a hard threshold assumptions or user input to estimate atmospheric light. However, the brightest pixels sometimes are objects such as car lights or streetlights, especially for smart car auxiliary transport systems. Simply using a hard threshold may cause a wrong estimation. In this paper, we propose a single optimized image dehazing method that estimates atmospheric light efficiently and removes haze through the estimation of a semi-globally adaptive filter. The enhanced images are characterized with little noise and good exposure in dark regions. The textures and edges of the processed images are also enhanced significantly.Comment: Multimedia Tools and Applications (2015

    Dense Haze: A benchmark for image dehazing with dense-haze and haze-free images

    Full text link
    Single image dehazing is an ill-posed problem that has recently drawn important attention. Despite the significant increase in interest shown for dehazing over the past few years, the validation of the dehazing methods remains largely unsatisfactory, due to the lack of pairs of real hazy and corresponding haze-free reference images. To address this limitation, we introduce Dense-Haze - a novel dehazing dataset. Characterized by dense and homogeneous hazy scenes, Dense-Haze contains 33 pairs of real hazy and corresponding haze-free images of various outdoor scenes. The hazy scenes have been recorded by introducing real haze, generated by professional haze machines. The hazy and haze-free corresponding scenes contain the same visual content captured under the same illumination parameters. Dense-Haze dataset aims to push significantly the state-of-the-art in single-image dehazing by promoting robust methods for real and various hazy scenes. We also provide a comprehensive qualitative and quantitative evaluation of state-of-the-art single image dehazing techniques based on the Dense-Haze dataset. Not surprisingly, our study reveals that the existing dehazing techniques perform poorly for dense homogeneous hazy scenes and that there is still much room for improvement.Comment: 5 pages, 2 figure

    Gated Fusion Network for Single Image Dehazing

    Full text link
    In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original hazy image by applying White Balance (WB), Contrast Enhancing (CE), and Gamma Correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final dehazed image is yielded by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach such that the halo artifacts can be avoided. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms

    Haze Visibility Enhancement: A Survey and Quantitative Benchmarking

    Full text link
    This paper provides a comprehensive survey of methods dealing with visibility enhancement of images taken in hazy or foggy scenes. The survey begins with discussing the optical models of atmospheric scattering media and image formation. This is followed by a survey of existing methods, which are grouped to multiple image methods, polarizing filters based methods, methods with known depth, and single-image methods. We also provide a benchmark of a number of well known single-image methods, based on a recent dataset provided by Fattal and our newly generated scattering media dataset that contains ground truth images for quantitative evaluation. To our knowledge, this is the first benchmark using numerical metrics to evaluate dehazing techniques. This benchmark allows us to objectively compare the results of existing methods and to better identify the strengths and limitations of each method

    A Novel Image Dehazing and Assessment Method

    Full text link
    Images captured in hazy weather conditions often suffer from color contrast and color fidelity. This degradation is represented by transmission map which represents the amount of attenuation and airlight which represents the color of additive noise. In this paper, we have proposed a method to estimate the transmission map using haze levels instead of airlight color since there are some ambiguities in estimation of airlight. Qualitative and quantitative results of proposed method show competitiveness of the method given. In addition we have proposed two metrics which are based on statistics of natural outdoor images for assessment of haze removal algorithms.Comment: Accepted in IBA-ICICT 201
    corecore