2 research outputs found

    Creation of an Experimental Engineering Toolbox for the Digital Transformation of Manual Jet Engine Assembly

    Get PDF
    The fast and safe motion of goods and people is one of the foundations of the modern world. Jet aircraft is the fastest transport at the moment along with high-speed trains. Accordingly, both production and maintenance of aircrafts are an important task of our modern industrial environment as well. Modern aircraft engines require appropriate care and understanding of design and manufacturing. This is even more important, as the production of aerospace engines remains a manual process in many cases with limited data sources. Thus, quality control will need to take into account verification of manufacturing and assembly steps through specific checks and controls whilst implementing additional data sources. Automation of tasks still is at a low level. In this article a review of the challenges with regard to controls, automation and process and technical understanding for aerospace engine production and repair is provided. As this requires the collaboration of many teams and partners, an improvement and step change towards deeper understanding and process efficiency is required. As many operations remain manual, innovations for how humans interact with the technology and collaborate with an industrial environment are needed. The project in this article demonstrates the creation and usage of the proposed solutions for collaboration, troubleshooting and error correction

    Designing a Contactless, AI System to Measure the Human Body using a Single Camera for the Clothing and Fashion Industry

    Get PDF
    Using a single RGB camera to obtain accurate body dimensions rather than measuring these manually or via more complex multi-camera or more expensive 3D scanners, has a high application potential for the apparel industry. In this thesis, a system that estimates upper human body measurements using a set of computer vision and machine learning techniques. The main steps involve: (1) using a portable camera; (2) improving image quality; (3) isolating the human body from the surrounding environment; (4) performing a calibration step; (5) extracting body features from the image; (6) indicating markers on the image; (7) producing refined final results. In this research, a unique geometric shape is favored, namely the ellipse, to approximate human body main cross sections. We focus on the upper body horizontal slices (i.e. from head to hips) which, we show, can be well represented by varying an ellipse’s eccentricity, this per individual. Then, evaluating each fitted ellipse’s perimeter allows us to obtain better results than the current state-of-the-art for use in the fashion and online retail industry. In our study, I selected a set of two equations, out of many other possible choices, to best estimate upper human body horizontal cross sections via perimeters of fitted ellipses. In this study, I experimented with the system on a diverse sample of 78 participants. The results for the upper human body measurements in comparison to the traditional manual method of tape measurements, when used as a reference, show ±1cm average differences, sufficient for many applications, including online retail
    corecore