193 research outputs found

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Modelling Professional Singers: A Bayesian Machine Learning Approach with Enhanced Real-time Pitch Contour Extraction and Onset Processing from an Extended Dataset.

    Get PDF
    Singing signals are one of the input data that computer systems need to analyse, and singing is part of all the cultures in the world. However, although there have been several studies on audio signal processing during the last three decades, it is still an active research area because most of the available algorithms in the literature require improvement due to the complexity of audio/music signals. More efforts are needed for analysing sounds/music in a real-time environment since the algorithms should work only on the past data, while in an offline system, all the required data are available. In addition, the complexity of the data will be increased if the audio signals come from singing due to the unique features of singing signals (such as vocal system, vibration, pitch drift, and tuning approach) that make the signals different and more complicated than those from an instrument. This thesis is mainly focused on analysing singing signals and better understanding how trained- professional singers sing the pitch frequency and duration of the notes according to their position in a piece of music and the singing technique applied. To do this, it is discovered that by incorporating singing features, such as gender and BPM, a real-time pitch detection algorithm can be found to estimate fundamental frequencies with fewer errors. In addition, two novel algorithms were proposed, one for smoothing pitch contours and another for estimating onset, offset, and the transition between notes. These two algorithms showed better results as compared to several other state-of-the-art algorithms. Moreover, a new vocal dataset that included several annotations for 2688 singing files was published. Finally, this thesis presents two models for calculating pitches and the duration of notes according to their positions in a piece of music. In conclusion, optimizing results for pitch-oriented Music Information Retrieval (MIR) algorithms necessitates adapting/selecting them based on the unique characteristics of the signals. Achieving a universal algorithm that performs exceptionally well on all data types remains a formidable challenge given the current state of technology

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences
    • …
    corecore