29,542 research outputs found

    Direct sampling of the Susskind-Glogower phase distributions

    Full text link
    Coarse-grained phase distributions are introduced that approximate to the Susskind--Glogower cosine and sine phase distributions. The integral relations between the phase distributions and the phase-parametrized field-strength distributions observable in balanced homodyning are derived and the integral kernels are analyzed. It is shown that the phase distributions can be directly sampled from the field-strength distributions which offers the possibility of measuring the Susskind--Glogower cosine and sine phase distributions with sufficiently well accuracy. Numerical simulations are performed to demonstrate the applicability of the method.Comment: 10 figures using a4.st

    Universal width distributions in non-Markovian Gaussian processes

    Full text link
    We study the influence of boundary conditions on self-affine random functions u(t) in the interval t/L \in [0,1], with independent Gaussian Fourier modes of variance ~ 1/q^{\alpha}. We consider the probability distribution of the mean square width of u(t) taken over the whole interval or in a window t/L \in [x, x+\delta]. Its characteristic function can be expressed in terms of the spectrum of an infinite matrix. This distribution strongly depends on the boundary conditions of u(t) for finite \delta, but we show that it is universal (independent of boundary conditions) in the small-window limit. We compute it directly for all values of \alpha, using, for \alpha<3, an asymptotic expansion formula that we derive. For \alpha > 3, the limiting width distribution is independent of \alpha. It corresponds to an infinite matrix with a single non-zero eigenvalue. We give the exact expression for the width distribution in this case. Our analysis facilitates the estimation of the roughness exponent from experimental data, in cases where the standard extrapolation method cannot be usedComment: 15 page

    Non-equilibrium supercurrent through a quantum dot: current harmonics and proximity effect due to a normal metal lead

    Get PDF
    We consider a Hamiltonian model for a quantum dot which is placed between two superconducting leads with a constant bias imposed between these leads. Using the non-equilibrium Keldysh technique, we focus on the subgap current, where it is known that multiple Andreev reflections (MAR) are responsible for charge transfer through the dot. Attention is put on the DC current and on the first harmonics of the supercurrent. Varying the energy and width of the resonant level on the dot, we first investigate a cross-over from a quantum dot regime to a quantum point contact regime when there is zero coupling to the normal probe. We then study the effect on the supercurrent of the normal probe which is attached to the dot. This normal probe is understood to lead to dephasing, or alternatively to induce reverse proximity effect. We describe the full crossover from zero dephasing to the incoherent case. We also compute the Josephson current in the presence of the normal lead, and find it in excellent agreement with the values of the non-equlibrium current extrapolated at zero voltage

    Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units

    Full text link
    I introduce a new code for fast calculation of the Lomb-Scargle periodogram, that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a high-end GPU it is faster by a factor approaching thirty. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities; and Monte-Carlo simulation of periodogram statistical properties.Comment: Accepted by ApJ. Accompanying program source (updated since acceptance) can be downloaded from http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.g

    Dissipation, topology, and quantum phase transition in a one-dimensional Joesphson junction array

    Full text link
    We study the phase diagram and quantum critical properties of a resistively shunted Josephson junction array in one dimension from a strong coupling analysis. After mapping the dissipative quantum phase model to an effective sine-Gordon model we study the renormalization group flow and the phase diagram. We try to bridge the phase diagrams obtained from the weak and the strong coupling renormalization group calculations to extract a more comprehensive picture of the complete phase diagram. The relevance of our theory to experiments in nanowires is discussed.Comment: 13 pages, 3 figures, A few typos are correcte
    • …
    corecore