425 research outputs found

    Multipair Massive MIMO Relaying Systems with One-Bit ADCs and DACs

    Full text link
    This paper considers a multipair amplify-and-forward massive MIMO relaying system with one-bit ADCs and one-bit DACs at the relay. The channel state information is estimated via pilot training, and then utilized by the relay to perform simple maximum-ratio combining/maximum-ratio transmission processing. Leveraging on the Bussgang decomposition, an exact achievable rate is derived for the system with correlated quantization noise. Based on this, a closed-form asymptotic approximation for the achievable rate is presented, thereby enabling efficient evaluation of the impact of key parameters on the system performance. Furthermore, power scaling laws are characterized to study the potential energy efficiency associated with deploying massive one-bit antenna arrays at the relay. In addition, a power allocation strategy is designed to compensate for the rate degradation caused by the coarse quantization. Our results suggest that the quality of the channel estimates depends on the specific orthogonal pilot sequences that are used, contrary to unquantized systems where any set of orthogonal pilot sequences gives the same result. Moreover, the sum rate gap between the double-quantized relay system and an ideal non-quantized system is a moderate factor of 4/Ï€24/\pi^2 in the low power regime.Comment: 14 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions

    Full text link
    Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the concept of the holographic multiple-input multiple-output (HMIMO), which will actualize holographic radios with reasonable power consumption and fabrication cost. The HMIMO is facilitated by ultra-thin, extremely large, and nearly continuous surfaces that incorporate reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMO opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM-domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMO communications are still at an initial stage, its fundamental limits remain to be unveiled, and a certain number of critical technical challenges need to be addressed. In this survey, we present a comprehensive overview of the latest advances in the HMIMO communications paradigm, with a special focus on their physical aspects, their theoretical foundations, as well as the enabling technologies for HMIMO systems. We also compare the HMIMO with existing multi-antenna technologies, especially the massive MIMO, present various...Comment: double column, 58 page
    • …
    corecore