6,915 research outputs found

    Omnidirectional Bats, Point-to-Plane Distances, and the Price of Uniqueness

    Get PDF
    We study simultaneous localization and mapping with a device that uses reflections to measure its distance from walls. Such a device can be realized acoustically with a synchronized collocated source and receiver; it behaves like a bat with no capacity for directional hearing or vocalizing. In this paper we generalize our previous work in 2D, and show that the 3D case is not just a simple extension, but rather a fundamentally different inverse problem. While generically the 2D problem has a unique solution, in 3D uniqueness is always absent in rooms with fewer than nine walls. In addition to the complete characterization of ambiguities which arise due to this non-uniqueness, we propose a robust solution for inexact measurements similar to analogous results for Euclidean Distance Matrices. Our theoretical results have important consequences for the design of collocated range-only SLAM systems, and we support them with an array of computer experiments.Comment: 5 pages, 8 figures, submitted to ICASSP 201

    Shapes from Echoes: Uniqueness from Point-to-Plane Distance Matrices

    Full text link
    We study the problem of localizing a configuration of points and planes from the collection of point-to-plane distances. This problem models simultaneous localization and mapping from acoustic echoes as well as the notable "structure from sound" approach to microphone localization with unknown sources. In our earlier work we proposed computational methods for localization from point-to-plane distances and noted that such localization suffers from various ambiguities beyond the usual rigid body motions; in this paper we provide a complete characterization of uniqueness. We enumerate equivalence classes of configurations which lead to the same distance measurements as a function of the number of planes and points, and algebraically characterize the related transformations in both 2D and 3D. Here we only discuss uniqueness; computational tools and heuristics for practical localization from point-to-plane distances using sound will be addressed in a companion paper.Comment: 13 pages, 13 figure

    Pop-up SLAM: Semantic Monocular Plane SLAM for Low-texture Environments

    Full text link
    Existing simultaneous localization and mapping (SLAM) algorithms are not robust in challenging low-texture environments because there are only few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we propose real-time monocular plane SLAM to demonstrate that scene understanding could improve both state estimation and dense mapping especially in low-texture environments. The plane measurements come from a pop-up 3D plane model applied to each single image. We also combine planes with point based SLAM to improve robustness. On a public TUM dataset, our algorithm generates a dense semantic 3D model with pixel depth error of 6.2 cm while existing SLAM algorithms fail. On a 60 m long dataset with loops, our method creates a much better 3D model with state estimation error of 0.67%.Comment: International Conference on Intelligent Robots and Systems (IROS) 201
    • …
    corecore