6,714 research outputs found

    A Survey on Joint Object Detection and Pose Estimation using Monocular Vision

    Get PDF
    In this survey we present a complete landscape of joint object detection and pose estimation methods that use monocular vision. Descriptions of traditional approaches that involve descriptors or models and various estimation methods have been provided. These descriptors or models include chordiograms, shape-aware deformable parts model, bag of boundaries, distance transform templates, natural 3D markers and facet features whereas the estimation methods include iterative clustering estimation, probabilistic networks and iterative genetic matching. Hybrid approaches that use handcrafted feature extraction followed by estimation by deep learning methods have been outlined. We have investigated and compared, wherever possible, pure deep learning based approaches (single stage and multi stage) for this problem. Comprehensive details of the various accuracy measures and metrics have been illustrated. For the purpose of giving a clear overview, the characteristics of relevant datasets are discussed. The trends that prevailed from the infancy of this problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and Pattern Recognition (CCVPR) 201

    Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

    Get PDF
    Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors
    • …
    corecore