56 research outputs found

    Relating Graph Thickness to Planar Layers and Bend Complexity

    Get PDF
    The thickness of a graph G=(V,E)G=(V,E) with nn vertices is the minimum number of planar subgraphs of GG whose union is GG. A polyline drawing of GG in R2\mathbb{R}^2 is a drawing Γ\Gamma of GG, where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities are two important aesthetics of such a drawing. The bend complexity of Γ\Gamma is the maximum number of bends per edge in Γ\Gamma, and the layer complexity of Γ\Gamma is the minimum integer rr such that the set of polygonal chains in Γ\Gamma can be partitioned into rr disjoint sets, where each set corresponds to a planar polyline drawing. Let GG be a graph of thickness tt. By F\'{a}ry's theorem, if t=1t=1, then GG can be drawn on a single layer with bend complexity 00. A few extensions to higher thickness are known, e.g., if t=2t=2 (resp., t>2t>2), then GG can be drawn on tt layers with bend complexity 2 (resp., 3n+O(1)3n+O(1)). However, allowing a higher number of layers may reduce the bend complexity, e.g., complete graphs require Θ(n)\Theta(n) layers to be drawn using 0 bends per edge. In this paper we present an elegant extension of F\'{a}ry's theorem to draw graphs of thickness t>2t>2. We first prove that thickness-tt graphs can be drawn on tt layers with 2.25n+O(1)2.25n+O(1) bends per edge. We then develop another technique to draw thickness-tt graphs on tt layers with bend complexity, i.e., O(2t⋅n1−(1/β))O(\sqrt{2}^{t} \cdot n^{1-(1/\beta)}), where β=2⌈(t−2)/2⌉\beta = 2^{\lceil (t-2)/2 \rceil }. Previously, the bend complexity was not known to be sublinear for t>2t>2. Finally, we show that graphs with linear arboricity kk can be drawn on kk layers with bend complexity 3(k−1)n(4k−2)\frac{3(k-1)n}{(4k-2)}.Comment: A preliminary version appeared at the 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201

    The Complexity of Simultaneous Geometric Graph Embedding

    Full text link
    Given a collection of planar graphs G1,…,GkG_1,\dots,G_k on the same set VV of nn vertices, the simultaneous geometric embedding (with mapping) problem, or simply kk-SGE, is to find a set PP of nn points in the plane and a bijection ϕ:V→P\phi: V \to P such that the induced straight-line drawings of G1,…,GkG_1,\dots,G_k under ϕ\phi are all plane. This problem is polynomial-time equivalent to weak rectilinear realizability of abstract topological graphs, which Kyn\v{c}l (doi:10.1007/s00454-010-9320-x) proved to be complete for ∃R\exists\mathbb{R}, the existential theory of the reals. Hence the problem kk-SGE is polynomial-time equivalent to several other problems in computational geometry, such as recognizing intersection graphs of line segments or finding the rectilinear crossing number of a graph. We give an elementary reduction from the pseudoline stretchability problem to kk-SGE, with the property that both numbers kk and nn are linear in the number of pseudolines. This implies not only the ∃R\exists\mathbb{R}-hardness result, but also a 22Ω(n)2^{2^{\Omega (n)}} lower bound on the minimum size of a grid on which any such simultaneous embedding can be drawn. This bound is tight. Hence there exists such collections of graphs that can be simultaneously embedded, but every simultaneous drawing requires an exponential number of bits per coordinates. The best value that can be extracted from Kyn\v{c}l's proof is only 22Ω(n)2^{2^{\Omega (\sqrt{n})}}

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201
    • …
    corecore