304 research outputs found

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFEk\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Algorithms and Bounds for Drawing Non-planar Graphs with Crossing-free Subgraphs

    Full text link
    We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing {\Gamma} of G in the plane such that the edges of S are not crossed in {\Gamma} by any edge of G? We give positive and negative results for different kinds of connected spanning subgraphs S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we consider the possibility of bending the edges of G not in S; in this setting we discuss different trade-offs between the number of bends and the required drawing area.Comment: 21 pages, 9 figures, extended version of 'Drawing Non-planar Graphs with Crossing-free Subgraphs' (21st International Symposium on Graph Drawing, 2013

    Axis-Parallel Right Angle Crossing Graphs

    Get PDF
    A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity. In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201

    Axis-Parallel Right Angle Crossing Graphs

    Full text link
    A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity. In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model
    corecore