5,262 research outputs found

    An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    Get PDF
    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables

    Experimental studies of vortex flows

    Get PDF
    This final report describes research work on vortex flows done during a four-year period beginning in March 1984 and funded by NASA Grant NCC2-294 from the Fluid Dynamics Research Branch of NASA Ames Research Center. After a brief introduction of the main topics addressed by the completed research, the accomplishments are summarized in chronological order

    Cryogenic wind tunnels for high Reynolds number testing

    Get PDF
    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels

    Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    Get PDF
    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results

    A survey of the three-dimensional high Reynolds number transonic wind tunnel

    Get PDF
    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed

    Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    Get PDF
    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated

    Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Get PDF
    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics

    Low speed tests of a fixed geometry inlet for a tilt nacelle V/STOL airplane

    Get PDF
    Test data were obtained with a 1/4 scale cold flow model of the inlet at freestream velocities from 0 to 77 m/s (150 knots) and angles of attack from 45 deg to 120 deg. A large scale model was tested with a high bypass ratio turbofan in the NASA/ARC wind tunnel. A fixed geometry inlet is a viable concept for a tilt nacelle V/STOL application. Comparison of data obtained with the two models indicates that flow separation at high angles of attack and low airflow rates is strongly sensitive to Reynolds number and that the large scale model has a significantly improved range of separation-free operation

    Design optimization of three dimensional geometry of wind tunnel contraction

    Get PDF
    AbstractThe aim of the present study is to redesign three dimensional geometry of existing open circuit wind tunnel contraction. The present work achieves the recommended contraction ratio, maximum uniformity at the working section mid-plane, without separation, no Gortler vortices in the contraction, and minimizing the boundary layer thickness at entrance to the working section. Using CFD along with optimization tools can shorten the design optimization cycle time. Moreover CFD allows insight into the minute flow details which otherwise are not captured using flow bench tests. The design exploration algorithm is used to optimize the profile of the contraction in an automated manner. The optimization is based on using screening method to choose the best design set and verified by the CFD solver. The new contraction, compared to the old design contraction is confirmed using CFD. The new design is manufactured in full scale. The optimized contraction is investigated computationally and experimentally

    A new design concept for indraft wind-tunnel inlets with application to the national full-scale aerodynamic complex

    Get PDF
    The present inlet design concept for an indraft wind tunnel, which is especially suited to applications for which a specific test section flow quality is required with minimum inlet size, employs a cascade or vaneset to control flow at the inlet plane, so that test section total pressure variation is minimized. Potential flow panel methods, together with empirical pressure loss predictions, are used to predict inlet cascade performance. This concept has been used to develop an alternative inlet design for the 80 x 120-ft wind tunnel at NASA Ames Research Center. Experimental results show that a short length/diameter ratio wind tunnel inlet furnishing atmospheric wind isolation and uniform test section flow can be designed
    corecore