3 research outputs found

    Simulation-based input loading condition optimisation of airport baggage handling systems

    Full text link
    Scheduling check-in station operations are a challenging problem within airport systems. Prior to determining check-in resource schedules, an important step is to estimate the Baggage Handling System (BHS) operating capacity under non-stationary conditions. This ensures that check-in stations are not overloaded with bags, which would adversely affect the system and cause cascade stops and blockages. Cascading blockages can potentially lead to a poor level of service and in worst scenario a customer may depart without their bags. This paper presents an empirical study of a multiobjective problem within a BHS system. The goal is to estimate near optimal input operating conditions, such that no blockages occurs at check-in stations, while minimising the baggage travel time and maximising the throughput performance measures. We provide a practical hybrid simulation and binary search technique to determine a near optimal input throughput operating condition. The algorithm generates capacity constraint information that may be used by a scheduler to plan check-in operations based on flight arrival schedules.<br /

    Improvement of Work Process Performance with Task Assignments and Mental Workload Balancing

    Get PDF
    The outcome of a work process depends heavily on which tasks assigned to which employees. However, sometimes-optimized assignments based on employees’ qualifications may result in an uneven and ineffective workload distribution among them. Likewise, an even workload distribution without considering the employee\u27s qualifications may cause unproductive employee-task matching that results in low performance of employees. This trade-off is even more noticeable for work processes during critical time junctions, such as in military command centers and emergency rooms that require being fast and effective without making errors. This study proposes that optimizing task-employee assignments according to their capabilities while also keeping them under a workload threshold, results in better performance for work processes, especially during critical time junctions. The goal is to select the employee-task assignments in order to minimize the average duration of a work process while keeping the employees under a workload threshold to prevent errors caused by overload. Due to uncertainties inherent in the problem related with the inter-arrival time of work orders, task durations and employees\u27 instantaneous workload, a utilized simulation-optimization approach solves this problem. More specifically, a discrete event human performance simulation model evaluates the objective function of the problem coupled with a genetic algorithm based meta-heuristic optimization approach to search the solution space. This approach proved to be useful in determining the right task-agent assignments by taking into consideration the employees\u27 qualifications and mental workload in order to minimize the average duration of a work process. Use of a sample work process shows the effectiveness of the developed simulation-optimization approach. Numerical tests indicate that the proposed approach finds better solutions than common practices and other simulation-optimization methods. Accordingly, by using this method, organizations can increase performance, manage excess-level workloads, and generate higher satisfactory environments for employees, without modifying the structure of the process itself

    Ein personen- und aufgabengenauer Ansatz zur robusten Einsatzplanung von Flugpersonal mittels Optimierung und Simulation

    Get PDF
    In der vorliegenden Arbeit wird ein personen- und aufgabengenauer Ansatz zur robusten Einsatzplanung von Flugpersonal vorgestellt. Es wird beschrieben, wie Methoden der mathematischen Optimierung und der diskreten Simulation weiterentwickelt und kombiniert werden, um es Verkehrs- und Einsatzplanern zu ermöglichen, die Qualität ihrer Planungsergebnisse zu erhöhen und diese noch vor deren Umsetzung auf ihre dynamischen Eigenschaften hin untersuchen zu können. So wird die anonyme Einsatzplanung zunächst in Form einer klassischen Crew Pairing Problemformulierung abgebildet, die sämtliche Zusammenhänge und Nebenbedingungen der Planung anonymer Personalumläufe beinhaltet. Hierauf aufbauend wird unter Hinzunahme personen- und aufgabenindividueller Aspekte wie Qualifikationen und Anforderungen ein Ansatz zur Planung individueller Personalumläufe entwickelt: das Job Pairing Problem. Um die Alltagstauglichkeit der Optimierungsergebnisse zu gewährleisten, werden in dessen Rahmen gleichzeitig sowohl bewährte, auf Robustheit abzielende Planungsindikatoren als auch eigens entwickelte Konzepte zur effizienteren Nutzung der Personalressource berücksichtigt. Unter Verwendung von Verfahren der multikriteriellen Optimierung und unter Einbeziehung von Planungspräferenzen werden diese heterogenen und teilw. gegenläufigen Zielsetzungen innerhalb der Problemformulierung berücksichtigt. Weiterhin werden in der Arbeit mit der ShiftJob-Nachbarschaftsrelation und der SingleBranch&Price-Heuristik Ansätze vorgestellt, die in Kombination mit etablierten exakten und heuristischen Optimierungsverfahren zur Bestimmung zulässiger und qualitativ hochwertiger Lösungen herangezogen werden können. Um die Alltagstauglichkeit der durch die Optimierung erstellten Einsatzpläne sicherstellen zu können, wird in dieser Arbeit darüber hinaus ein Simulationsmodell entwickelt, das sämtliche relevanten Flugzeug- und Personalprozesse innerhalb des operativen Flugverkehrs abbildet und auch mögliche Störungen während der Planumsetzung berücksichtigt. Um auch das operative Management und deren auf Störereignisse ausgerichteten Recoverystrategien zu integrieren, werden ausgewählte Handlungsalternativen abgebildet, die insbesondere den Bereich des Crew-Recovery mit seinen verschiedenen Einsatzformen der Flugdienstreserve abdecken. Es wird die programmtechnische Umsetzung des Modells in Form einer plattformunabhängigen und leicht zu erweiternden Simulationsanwendung beschrieben. Abschließend werden durch Validierung und Anwendung dieses Programms dessen korrektes Verhalten und dessen Nützlichkeit sowohl für wissenschaftliche als auch praktische Fragestellungen nachgewiesen. Entstanden ist diese Arbeit im Rahmen des Projekts Computer Aided Traffic Scheduling (CATS), das am Lehrstuhl von Prof. Dr. Ewald Speckenmeyer am Institut für Informatik der Universität zu Köln ins Leben gerufen und das zwischenzeitlich als Kooperation mit der Technischen Hochschule Köln, der Kölner Verkehrs-Betriebe AG (KVB) und der Lufthansa CityLine fortgeführt wurde. Innerhalb dieses Projektes werden schon seit Jahren Planungsprobleme aus dem Verkehrsbereich untersucht, immer mit dem Ziel, diese effizienter und insbesondere im Hinblick auf deren Störungsanfälligkeit robuster lösen zu können
    corecore