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ABSTRACT 

 

IMPROVEMENT OF WORK PROCESS PERFORMANCE WITH TASK ASSIGNMENTS 

AND MENTAL WORKLOAD BALANCING 

 

Cansu Kandemir 

Old Dominion University, 2016 

Director: Dr. Holly A. H. Handley 

 

The outcome of a work process depends heavily on which tasks assigned to which 

employees. However, sometimes-optimized assignments based on employees’ qualifications may 

result in an uneven and ineffective workload distribution among them. Likewise, an even 

workload distribution without considering the employee's qualifications may cause unproductive 

employee-task matching that results in low performance of employees. This trade-off is even 

more noticeable for work processes during critical time junctions, such as in military command 

centers and emergency rooms that require being fast and effective without making errors.  

This study proposes that optimizing task-employee assignments according to their 

capabilities while also keeping them under a workload threshold, results in better performance 

for work processes, especially during critical time junctions. The goal is to select the employee-

task assignments in order to minimize the average duration of a work process while keeping the 

employees under a workload threshold to prevent errors caused by overload. Due to uncertainties 

inherent in the problem related with the inter-arrival time of work orders, task durations and 

employees' instantaneous workload, a utilized simulation-optimization approach solves this 

problem. More specifically, a discrete event human performance simulation model evaluates the 

objective function of the problem coupled with a genetic algorithm based meta-heuristic 

optimization approach to search the solution space.  



  

  

This approach proved to be useful in determining the right task-agent assignments by 

taking into consideration the employees' qualifications and mental workload in order to minimize 

the average duration of a work process. Use of a sample work process shows the effectiveness of 

the developed simulation-optimization approach. Numerical tests indicate that the proposed 

approach finds better solutions than common practices and other simulation-optimization 

methods. Accordingly, by using this method, organizations can increase performance, manage 

excess-level workloads, and generate higher satisfactory environments for employees, without 

modifying the structure of the process itself. 
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1. INTRODUCTION 

 

The effects of globalization, increased competition, complex tasks, limited number of employees 

and time restrictions have transformed work processes from simple task sequences into more 

challenging networks that can benefit from continuous improvements. Impacted by these 

increased challenges, decisions on task assignments and considerations of employees’ workload 

have become even more difficult while inaccuracies resulting from such decisions can have 

consequences on the productivity of the organization. These consequences include failed tasks, 

reduced efficiency, and inability to meet deadlines.  

The problem of improving the performance of work processes in organizations has been handled 

in different ways (April, Better, Glover, Kelly, & Laguna, 2006). Introducing automation to the 

processes, providing education and training for the employees, improving the quality of the 

management of organization, and reforming the structure of the organization are some of the 

practices used. These practices may require significant changes, such as hiring new employees, 

and can be very costly for the organizations. However, by assigning the tasks to the most 

qualified available employee, increases the performance of an organization.   

In general, work processes consist of different tasks, which require different expertise. 

Employees usually have various degrees of qualifications and their performance may vary for 

different tasks. Therefore, the outcome of the work process depends heavily on which tasks 

assigned to which employees (Kamrani, Ayani, & Moradi, 2012). However, sometimes-

optimized assignments based on qualifications may result in overload conditions for highly 

qualified employees while the rest remain under-loaded or idle. On the contrary, even 

distribution of workload without taking into consideration the qualification of the employee may 
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cause unproductive employee-task matching resulting in low performance of employees. 

Accordingly, there is a tradeoff between optimized assignment of employees according to their 

capabilities and balancing employee workload levels. This tradeoff is even more noticeable for 

work processes in critical time junctions, such as work processes in an emergency room or 

military command center. 

This study proposes that optimization of task-employee assignment based on their qualifications 

while also keeping their workload under a threshold results in better performance. The aim is to 

propose a computational model to evaluate the potential improvements in outcomes of work 

processes in critical time junctions by optimizing task-employee assignments regarding their 

qualifications without overloading them. Critical time junctions are the time ranges when work 

orders come very frequently. Because of that, work processes intersecting and force employees 

to multi-task. By employing the proposed approached, organizations can manage excess levels of 

workload, increase employees’ performance, and generate higher satisfactory environments for 

members of the organization, without modifying the structure of the process itself.  

The research reported in this dissertation developed a computational model that assigns tasks to 

employees according to their capabilities while considering their mental workload level.  Use of 

the model, evaluated the performance variations in the outcome of the work process. Here, as the 

workload measure, mental workload of the employee seems to be appropriate. Mental workload 

reflects how difficult it is for the brain to accomplish task demands. Humans have a limited 

capacity for processing resources allocated to task performance. They are capable of multi-

tasking until task demands exceed available resources. In other words, mental workload is the 

perceived relationship between the amount of mental processing capability or resources and the 

amount required by the task. This is an important measurement because it provides awareness to 
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incidents where increased task demands within work processes may lead to poor or unacceptable 

performance (Cain, 2007).  

It is worth noting that the assignment problem and mental workload analyses are not new in the 

literature. A number of researchers have performed mental workload analysis within military and 

health-care environments that require problem recognition and diagnosis, formulation and 

implementation of plans of actions, prioritisation of plans of action, making prompt decisions 

based on the integration of experience and an understanding of current situations, and coping 

with unexpected situations. Commonly, simulation modeling through task network 

representation is being used for such analysis. In a task network model, performance of an 

individual can be analyzed by decomposing an assignment into a series of main tasks and then 

into series of sub-tasks. In Human Factors Engineering, this process is called task analysis and a 

task network is constructed by defining the sequence of the tasks (Dahn & Laughery, 1997). 

Furthermore, human performance modeling simulation modeling tools such as IMPRINT 

(Improved Performance Research Integration Tool) and IPME (The Integrated Performance 

Modeling Environment) that have the capability to include the effects of the employee’s 

education, experience, or the condition of the workspace while analyzing their mental workload 

level have been used extensively. The literature review section outlines the summary and 

references to these studies.  

It has generally been found that task assignment problems based on employee qualifications are 

solved with deterministic optimization (Carley, 2002; Cheng & Chu, 2012), while mental 

workload analyses are studied employing simulation modeling (Bierbaum, Fulford, Hamilton, & 

Fort, 1990; Mitchell, 2000). Deterministic optimization, which ignores uncertainty in order to 

come up with a unique and objective solution, relies on linear algebra and is fast in converging to 
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a solution (Cavazzuti, 2013). However, the nature of a work process is stochastic. In real life, the 

chance that an employee performs the tasks every time exactly the same way is not very likely. 

Even the duration of a simple task may vary according to employee’s mood, workload, current 

working conditions, difficulty of the task etc. In situations where uncertainty is at the center of 

the problem, a different strategy is essential.  

Given that simulation approximates reality, it also permits the inclusion of various sources of 

uncertainty and variability into tasks that affect work process outcomes. However, simulation 

generally answers "what-if" questions and it is not possible to find optimal solutions in 

reasonable time for the problems where the solution space increases exponentially as the number 

of independent variables increases.  

The problem in this study is a variation of the assignment problem, with the solution space 

growing exponentially as the number of independent variables (the number of possible task and 

employee pairs) increases. Therefore, it is difficult and inefficient to try to evaluate every single 

task-and-employee pair with the workload outputs. Nevertheless, the stochastic nature of the 

organizational environment cannot be ignored.  

The introduction of a two-step model helps to overcome this problem and provide a simulation 

environment with which to study task assignment and workload balance tradeoffs. The first step 

is the optimization tool to guide the search for the best configuration. The second step, the 

stochastic part, evaluates results of the configuration suggested from the first part. A Simulation 

Optimization approach can resolve problems related to the utilization of employees by merging 

optimization and simulation. Thus, the optimization algorithm and the evaluation function of the 

stochastic simulation method are integrated. Use of this approach will find the most beneficial 
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task-employee assignments and insure that mental workload of the employees stays under the 

threshold. Additionally, the output of this two-step model will test hypotheses based on 

employee-task assignment with various parameters and the impact on performance of work 

process, such as timeliness of the process in the case where no employee is overloaded.  

This study will contribute to the literature in several ways. First, the results of this study will help 

organizations address task assignments and employees’ overload problems using a 

methodological approach. The right matching of employee-task based on qualifications is 

hypothesized to be as important as keeping the employees in appropriate workload limit. For 

instance, an employee could get highly loaded and as a result cannot perform well even with the 

best qualifications. Additionally, a merged simulation-optimization approach may help 

researchers gain insights into the effectiveness of alternative research designs. The novel areas of 

this work are: 

 A Simulation Optimization (utilizing a discrete event human performance simulation-

genetic algorithm) approach that reaches optimal/near optimal solution of employee-task 

assignments (by reorganizing human resources) in reasonable time in order to minimize 

average duration (timeliness) of the work processes in critical time junctions without 

overloading the employees and without making any major changes in the structure of the 

work process.    

 An employee-task assignment tool that can handle large solution spaces (high number of 

employees and tasks).  

 A simulation modeling framework that embraces the stochastic nature of work processes 

such as task durations, inter-arrival time of work orders, and most importantly, 

employees’ instantaneous workload.   
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 A human performance simulation-modeling tool, which seamlessly integrates with other 

software. Current human performance simulation modeling tools (for commercial use) 

are only capable of getting input from the user such as IMPRINT, IPME that limit the 

analysis to only what-if analysis. The need of a human performance simulation-modeling 

tool that communicates with other software is satisfied. 

 A flexible tool, which managers can use to evaluate different work processes with 

different task-agent sizes, capabilities, workload combinations and operating rules.  

The performance of the developed simulation-optimization approach is tested through 

computational analysis. The results from the approach are compared to the results of common 

practices and other simulation-optimization approaches such as commercial simulation-

optimization packages. The findings are discussed in detail. Computational results provide 

managerial insights as well as highlighting the importance of such a simulation-optimization tool 

for assignment problem for work processes at critical time junctions. Overall, the developed 

simulation optimization was found to be effective and efficient in finding solutions to the 

problems considered.  

1.1 Problem Statement 

The purpose of this study is to propose a simulation optimization approach to find the task- 

employee pairs that improves performance of work processes in critical time junctions by 

regarding employees’ capabilities while keeping their workload under the upper workload limit. 

The combination of several tasks belonging to a process defines a work process. For instance, a 

software development process consists of main tasks such as coding the core program, planning 

validation and verification, and developing the interface. Then, each main task decomposes to 
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several subtasks. Each task requires different capabilities at different levels, which mean 

employees, must meet the necessary qualifications of each task.  

The critical aim of this dissertation is to provide a method to improve the outcome of the work 

process (such as timeliness) by reorganizing the existing human resources without making any 

major changes in the structure of the work process (such as hiring new employees or changing 

the task structures).    

It is important to mention that measuring work process performance is a challenging task and 

there is no single universal method. There may be various performance measures for different 

work processes. For this study, performance measurement of the modeled organization and work 

process is related to the duration of the process. Since being as fast as possible is such an 

important factor of success for tasks processes in critical time junctions (i.e. emergency rooms 

processes that represent life or death situations and require fast decision making), a performance 

measure representing the timeliness of the process is an appropriate one. As a result, finding the 

task-employee combinations that minimize the average duration of the work process is chosen to 

be the objective of this study. Another reason is that both capability and skill level of employee 

can affect the work process duration. For instance, for an employee that has a lack of experience 

on a task, the time it would take him to finish the task would be longer. In addition, the employee 

cannot start a new, parallel task unless he/she has enough residual capacity (in other words, 

he/she is not going to be overloaded). Otherwise, the employee would be prone to errors or 

inefficiencies. Hence, not being able to start to a new task would increases the total duration of 

the process. Consequently, timeliness is an indicator of a successful work process in a critical 

time junction.  
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Several components of this research are worth noting. First, the following entities will be 

evaluated to assist in characterizing the work processes:  

 The number of available employees (set of agents) to assign the tasks;  

 The agents' capabilities and capability levels (depending on the problem scenario: 

education/training, qualification or experience level);  

 The number and type of tasks belonging to the work process, with a required level of 

capabilities;  

 Mental workload demand of each task and mental workload threshold of the agents; and  

 The time that the agent takes to finish a task, this is a function of his capabilities and the 

capability requirements of the task.  

For example, if an agent’s experience level for a specific task is low, then the completion time 

for that specific task that requires higher experience level will be longer. Second, the 

independent variables for this study will be the task-agent assignments. Lastly, the dependent 

variable will be the timeliness of the work process. The average duration to finish a work process 

will be used to determine the timeliness. A brief summary of the parameters is provided in Table 

1. 

 

Table 1. Summary of the Parameters  

Parameters Brief explanation 

Constants A work process A fixed ordered sequence of tasks with defined time 

duration, mental workload demands and required 

capability types and levels. 

A team Number of agents with capability types and levels  
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Table 1. Continued 

Independent 

Variables  

Task-Agent Assignment  Each task-agent pair  

Constraints Instantaneous Mental 

Workload Threshold  

Agents should stay under the defined mental 

workload level (mental workload threshold). An 

agent cannot start to an additional parallel task if it 

is going to increase his mental workload above the 

mental workload threshold level. 

Agent-Task Assignment 

Constraint  

An agent can work on no, one or more task and a 

task can only be assigned to one agent. 

Dependent 

Variables  

Timeliness The aim is to minimize the average duration of the 

work process by finding the right task-agent 

assignments.  

 

 

This study is applicable to a given number of agents and a task flow. In order to describe the 

work process, it should be modeled at a low level of abstraction. The characteristics of the 

agents, such as their qualification level, have a critical effect on their performance. For instance, 

for a software development task that requires specific programming language skills, the 

employee that has the required capability level in that language needs to be chosen. Capabilities 

can be ranked by using a ranking scale (such as 1 to 5) where low ranks (such as 1) indicates 

lacking of the capability and high ranks (such as 5) indicates that the employee is at an advanced 

level in terms of this capability. In the case of experience, these ranks can be measured by 

number of years in the organization or in that specific process. In other cases, the ranks may be 

subjective values assigned by the decision maker.  

Mental workload level is an essential indicator for work processes in critical time junctions. 

These include the operation of safety critical systems requiring active and passive vigilance 
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tasks, problem recognition and diagnosis, formulation and implementation of plans of actions, 

prioritisation of plans of action, remembering to do things, making prompt decisions based on 

the integration of experience and an understanding of current situations, and coping with 

unexpected events. It is the perceived relationship between the amount of mental processing 

capability or resources and the amount required by the task. In other words, mental workload 

reflects how difficult it is for the brain to accomplish task demands. This is an important 

measurement because it provides awareness as to where increased task demands within user 

operations may lead to poor or unacceptable performance (Cain, 2007). People are capable of 

multi-tasking until task demands exceed available resources. The human mind either can devote 

to task demands individually or collectively through several resources: visual, auditory, 

cognitive, and psychomotor. Therefore, the resources concept is based upon the assumption that 

human operators have a limited capacity for processing resources that may be allocated to task 

performance (Wickens, 2008). 

There are several mental workload measurement methods in the literature. For this study, Visual 

Auditory Cognitive Psychomotor (VACP) method will be used. According to this method, all 

tasks decomposes into different processing resources: visual, cognitive, auditory, and 

psychomotor (Mitchell, 2000). A specific scale represents the workload value for each 

processing resources. Note that this scale is task based and is not sensitive to human’s personal 

characteristics. The literature review section gives further information on VACP, comparison 

between different mental workload measures, and reasons for selecting this method.  

The simulation optimization process developed for this study will consist of two iterative and 

repeated sub-processes. The first sub-process will utilize a search procedure to guide and find 

satisfactory solutions of the agent-task assignment in order to minimize the average duration. 
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The assignment problem, in general, aims to determine the best assignment of tasks to agents 

according to a predefined objective function and constraints (Kamrani et al., 2012). 

Metaheuristic search algorithms have the capability to guide the search to near optimal or 

optimal solutions (Better et al., 2008). Genetic Algorithm (GA), which is a metaheuristic 

method, (Holland, 1975), appears to be the right search procedure for this problem. The second 

sub-process will utilize a simulation model to obtain the performance result (average work 

process duration) of the suggested solution from the optimization engine. In conducting 

simulation optimization, the output of each sub-process will be used as an input for the other. 

This iteration will continue until the stopping criteria are satisfied. 

The model created for this study will serve as a test-bed to evaluate different hypotheses on the 

method to assign agents to tasks based on capabilities, while still maintaining a workload balance 

among them in order to prevent errors and preserve or improve the level of performance. Data 

from an example work process will populate the model. The outcome of the virtual experiments 

will provide guidance on the tradeoffs between task assignment and workload balance and 

identify the region where both goals successfully meet. The outcome from these results will 

provide input to both organizational design and engineering management fields.  

Some examples of work processes in critical time junctions that this methodology can be applied 

to are summarized as follows: 

 A team of pharmacists working on medication reconciliation and order verification 

(Metzger, Chesson, & Momary, 2015). They have to accomplished the tasks such as: 

o identify any issues that need to be solves for medication reconciliation,  

o classify medications by disease state,  
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o review the verified medications and assess each new order for accuracy, 

appropriateness, and safety; 

in addition to numerous other job functions. Several studies show that as the orders 

increases, the likelihood of the pharmacists to make an error increases (Reilley, 

Grasha, & Schaffer, 2002). Moreover, their error rate and the time they spend on a 

patient found relates with their education and experience level (Gorbach et al., 2015). 

 Supervisory controllers in the operations of unmanned aerial vehicles (UAVs). In this 

work process, human operators monitor a system and intermittently interact with a 

computer interface to transform operator commands to detailed control actions on the 

system (Sheridan, 2012; Cummings & Guerlain, 2007). One critical aspect of the 

UAV pilot’s task requirements is the ability to manage multiple modes of 

communication. Pilots control the vehicle through radio and satellite 

communications. In addition to these demanding communication tasks, they a host of 

other tasks to accomplish including vehicle routing, which involves creating 

emergency and operational inputs, sensor manipulation to evaluate weather, and 

vehicle system checks. 

 General practitioners in an emergency room with too many patients to see in a short 

space of time. Number of patients, level of training and experience of physicians has 

found to have an important effect on patient waiting time (Levin et al., 2007).  

 A submarine team that is asked to take on the challenge of incorporating unmanned 

aerial systems (UAS) as a sensor in support of their current mission (Cook, Heacox, 

Averett, & Handley, 2012; Smallman, Cook, Beer, & Lacson, 2009). Generally, there 

are no explicit defined assignments for the submarine team during UAS launch and 
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flight control. The team member has different roles, qualifications, and availability. 

Incorporating the new tasks to their existing schedule is a challenge with the time 

constraints. 

The remainder of this dissertation is structured as follows. In Chapter 2, the literature review 

discusses the assignment problem in organizational design and mental workload analysis for 

work processes and simulation optimization methodology. In Chapter 3 includes a description of 

the simulation optimization methodology (task-agent assignments for work processes in critical 

time junctions). Chapter 4 discusses the use of this method to create a case study model for a 

hypothetical “Air Interdiction Planning” mission. Chapter 5 includes an analysis of the results 

under various operational tempos by comparing the developed simulation optimization method 

to common practices and other simulation optimization methods from the case study. Finally, in 

Chapter 6 provides concluding remarks and possible areas for further work.  
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2. LITERATURE REVIEW 

 

In order to approach the problem of assigning tasks to agents for work processes in critical time 

junctions in an efficient way, the literature was reviewed in three parts. First, the assignment 

problem in work process design, and second, mental workload analysis for work processes, was 

reviewed with their applications. Lastly, simulation optimization techniques were reviewed as 

the intended method to be applied the problem under consideration.   

2.1. Assignment Problem in Work Process Design   

In the field of operations research, correct assignment of tasks to employees based on evaluation 

of their suitability and resource constraints is known as the "assignment problem". The 

assignment problem and different variants of it have been discussed for more than 55 years. This 

section focuses on applications and the solution methods of assignment problems in 

organizations. 

As stated in the definition of the assignment problem, the aim is to assign agents to tasks based 

on evaluation of their suitability (Kamrani, 2012). A literature review focused on the assignment 

problem shows that skill or capability level is a commonly used way to measure suitability. The 

measure of skill level generally changes according to the type of organization. For instance, in a 

military organization, the skill level relates to the rank of the military employees, while for a 

nurse working in an emergency room, skill level relates with experience and the ability to cope 

with stress. Some studies use ranking scales for skill levels and ask subject matter experts to rate 

them. In addition, there are studies that use experience (such as time spent utilizing a specific 

skill) as the capability level.  
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Minxin, Gwo-Hshiung, and Liu (2003) proposed a multi-criteria assessment model capable of 

evaluating the suitability of individual employees for a specified task according to their 

capabilities, social relationships, and existing tasks. Candidates are ranked based on their 

suitability scores to support workflow administrators in selecting appropriate employees to 

perform the tasks assigned to a given role. The proposed assessment model overcomes the lack 

of role-based task assignment in current workflow management systems.  

Similarly, Eiselt and Marianov (2008) developed a mathematical model for the assignment of 

tasks to individual employees with different capabilities. They defined a skill space where an 

employee's position represents the level acquired in each skill. Tasks can also be mapped into the 

skill space. Once feasible task assignments are determined, tasks are assigned to employees. The 

objectives are to minimize inequity between the individual employees' workload and minimize 

employee-task skill differences to avoid boredom and costs. Both Eiselt and Marianov (2008) 

and Minxin et al. (2003) measure workload as the total number of hours that the employee 

works.  

Otero, Otero, Weissberger, and Qureshi (2010) claim that completing reliable software products 

within the expected time frame is a major problem for companies that develop software 

applications, the reason attributed to inadequate resource allocation. Consequently, they state that 

it is beneficial to generate systematic employee assignment processes that consider the complete 

candidate skill set and provide the best fit in order to increase quality, reduce cost, and reduce 

training time. Moreover, Tsai, Moskowitz, and Lee (2003) argue that software development 

projects are often unsuccessful because of inadequate human resource project planning. A major 

contributor to this problem is the inefficient allocation of resources that may result in schedule 

overruns, decreased customer satisfaction, decreased employee morale, reduced product quality, 
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and negative market reputation. The inevitable consequence is a decrease in potential profit for 

companies. Accordingly, Otero et al. (2010) proposed a multi-criteria decision making approach 

for allocating resources to software engineering task assignment. They used a Desirability 

Function developed by Derringer and Suich (1980) to provide a unified metric representative of 

the suitability between the complete set of skills available from employees and skills required for 

tasks to assign quantitatively resources to tasks even when the most desirable skills are not 

available from the existing workforce. They took into consideration project specific capabilities, 

such as years of experience, level of perceived expertise on a particular language, operating 

system, domain knowledge, etc.    

In the case where optimum skill sets are not available, Otero, Centeno, Ruiz-Torres, and Otero 

(2009) developed a linear programming assignment model to match resources to tasks that 

considers existing capabilities of employees, required levels of expertise, and priorities of 

required skills by the task. Also, Acuna and Juristo (2004) and Acuna, Juristo, and Moreno 

(2006) developed procedures for assigning employees to software tasks according to the 

assessment of behavioral competencies. Tsai et al. (2003) proposed the critical resource diagram 

(CRD) method and the Taguchi’s parameter design approach for the selection of employees. The 

CRD method used resource scheduling to represent human-resource workflow and tasks’ 

precedence. The Taguchi’s parameter design approach obtained a scheme that would optimize 

the selection of engineers for tasks under dynamic and stochastic conditions.   

Kamrani et al. (2012) considered the tasks to be part of a business process model interconnected 

according to defined rules and constraints (a more complex form of assignment problem). 

Business process modeling refers to "describing business processes at a high abstraction level, by 

means of a formal notation to represent activities and their causal and temporal relationships, as 
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well as specific business rules that process executions have to comply with" (Kamrani, Rassul, & 

Karimson, 2010, p.1). Business process modeling focuses on the representation of the execution 

order of activities. They used two main categories of business processes: assignment-

independent and assignment-dependent. In the first category, different assignments of tasks to 

employees do not affect the flow of the business process. In the second category, processes 

contain critical tasks that may change the workflow, depending on who performs them. 

Combination of the Hungarian Algorithm with either the analytical method or simulation to 

provides an optimal solution. They conducted a series of tests, which showed that the proposed 

algorithms efficiently found optimal solutions for assignment-independent and near-optimal 

solutions for assignment-dependent processes. 

In the last two decades, several papers have appeared in the literature where the use of the Multi-

Resource Generalized Assignment Problem (MRGAP) solved employee allocation problems 

(Alidaee, Gao, & Wang, 2010). In these problems, the number of variables grew exponentially. 

In their research, they consider a generalization of MRGAP and show the improvement upon 

several published models based on MRGAP where the number of variables were exponentially 

large. They used computational experiments to demonstrate the advantages of the new model 

over existing ones. 

A summary of the methods and their applications can be found in Table 2. The checklist of 

methods, considerations and applications of these studies are shown in Table 3. All of the 

approaches, mentioned in this section, aim to assign tasks to limited resources (employees) in an 

efficient way. In general, task assignment problems for business environments are solved with 

deterministic optimization where the uncertainty is ignored in order to come up with a unique 

and objective solution. However, the nature of an organization that embraces work processes is 
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stochastic. Moreover, not every approach mentioned here take into consideration the workload of 

the employee. The studies that take the workload of employee into consideration measured it as 

the hours that the employee works.  Since this study investigates high tempo work processes that 

forces employees to multi-task, a more sensitive workload measurement method is necessary. As 

a result, the next section focuses on mental workload analysis.  

 

Table 2. Summary of Task-Employee Assignment Methods 

Approach-

Method 

Description Application Reference 

Multi-Criteria 

Optimization 

Evaluates the suitability of 

individual employees for a 

specified task according to 

their capabilities, social 

relationships, and existing 

tasks. Candidates are ranked 

based on their suitability 

scores. 

Uses a simulated 

example to illustrate 

the application of the 

proposed assessment 

model with 5 

employees, 7 skills, 

and 5 tasks. 

Minxin, Gwo-

Hshiung, & Liu 

(2003) 

Mixed 

Integer, Non-

Linear 

Mathematical 

Model 

Aims to assign tasks to 

individual employees with 

different capabilities. The 

objectives are to minimize 

inequity between the 

individual employees' 

workload, minimize 

employee-task distances to 

avoid boredom and costs. 

The approach has 

applied in DICTUC 

S.A., a company 

owned by the 

Pontificia Universidad 

Católica de Chile, to a 

subset of 15 

employees, 14 skills, 

and 22 (recurring) 

tasks. 

Eiselt & Marianov 

(2008) 
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Table 2. Continued 

Multi-Criteria 

Decision 

Making 

Allocates resources to 

software engineering task 

assignment. They used a 

Desirability Functions They 

took into consideration 

project specific capabilities, 

such as years of experience, 

level of perceived expertise 

on a particular language, etc. 

The case study 

assumes a scenario 

where 10 candidates 

are available. The 

identified required 

skill set involves 5 

skills. 

Otero, Otero, 

Weissberger, & 

Qureshi (2010) 

Linear 

Programming 

Assignment 

Model 

Matches resources to tasks 

that consider existing 

capabilities of employees, 

required levels of expertise, 

and priorities of required 

skills the task. 

A sample scenario is 

used. Survey analysis 

was conducted to test 

its validity. 

Otero, Centeno, Ruiz-

Torres, & Otero 

(2009) 

Critical 

Resource 

Diagram 

(CRD) and 

Taguchi’s 

Parameter 

Design 

Develops a model to use for 

the selection of employees. 

The CRD was used for 

resource scheduling to 

represent human-resource 

workflow and tasks’ 

precedence.  The Taguchi’s 

parameter design was used to 

obtain a scheme that would 

optimize the selection of 

engineers for tasks under 

dynamic and stochastic 

conditions. 

They used a scenario 

that contains 3 jobs; 

each job has 2 possible 

candidates. 

Tsai et al. (2003) 

A conceptual 

model/ 

procedure 

Assigns employees to 

software tasks according to 

the assessment of behavioral 

competencies 

They used statistical 

tests for validation. 

Acuna & Juristo 

(2004) and Acuna, 

Juristo, & Moreno 

(2006) 
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Table 2. Continued 

Hungarian 

algorithm 

combined 

with either the 

analytical 

method or 

simulation 

They used two main 

categories of business 

processes, assignment-

independent and assignment-

dependent. In the first 

category, different 

assignments of tasks to 

employees do not affect the 

flow of the business process. 

In the second category, 

processes contain critical 

tasks that may change the 

workflow, depending on who 

performs them. 

They used a model 

inspired by a work 

process of military 

staff. They conducted 

a series of tests, which 

shows that the 

proposed algorithms 

efficiently find 

optimal solutions for 

assignment-

independent and near-

optimal solutions for 

assignment-dependent 

processes. 

Kamrani, Ayani, and 

Moradi (2012), 

Kamrani, Rassul, & 

Karimson, (2010) 

Multi-

resource 

generalized 

assignment 

problem 

(MRGAP) 

Proposes a compact 

generalized assignment 

problem model that can be 

used to solve employee 

allocation problems. 

They used 

computational 

experiments to 

demonstrate the 

advantages of the new 

model over existing 

ones. 

Alidaee, Gao, & 

Wang, (2010) 
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Table 3. Checklist of methods, considerations and applications in assignment problem for work process design 

Reference 

Method  Consider Application  

Mathematical 

Modeling 

(Deterministic) 

Heuristic 

Methods  

Simulation 

Modelling 

Level of 

capability of 

employees  

Workload  
Real Life 

Application  

Sample / 

Artificial 

Scenario  

Minxin, Gwo-

Hshiung, & Liu 

(2003) 

x     x x x   

Tsai et al. (2003) x x   
 

    x 

Eiselt & Marianov 

(2008) 
x     x x x   

Otero, Centeno, Ruiz-

Torres, & Otero 

(2009) 

x     x     x 

Otero, Otero, 

Weissberger, & 

Qureshi (2010) 

x     x     x 

Kamrani, Rassul, & 

Karimson, (2010) 
x x x x     x 

Kamrani, Ayani, & 

Moradi (2012) 
x x x x   x 

Alidaee, Gao, & 

Wang, (2010) 
x           x 

This Study  x x x x x  x 
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2.2. Mental Workload Analysis for Work Processes 

As discussed in the previous section, the total number of hours that an employee works generally 

is used as a measure for workload. Even though it is very meaningful for business work 

processes (such as software development), another type of measure is needed for the work 

processes in critical time junctions and those requiring multi-tasking (such as intelligence analyst 

work processes and emergency room tasks). In that case, Hart and Staveland (1988) defines 

mental workload measures as the supposed relationship between the amounts of mental 

processing capability or resources and the amount required by the task are appropriate measures.    

The main objective of measuring workload is to quantify mental cost of performing tasks in 

order to predict operator and system performance (Cain, 2007). Wickens (1992) states that “... 

performance is not all that matters in the design of a good system. It is just as important to 

consider what demand a task imposes on the operator’s limited resources” (p. 390). As task 

difficulty increases, performance usually decreases, response times and errors increase, control 

variability increases, fewer tasks are completed per unit time, and task performance strategies 

change (Huey & Wickens, 1993); there is less residual capacity remains to deal with other issues.  

There are three different measurements techniques of mental workload. These are 

psychophysiological, subjective, and performance measurement techniques (Miller, 2001). 

Psychophysiological measurement of workload is a concept based on evidence that increased 

mental demands lead to increased physical responses from the body. Psychophysiological 

workload measures rely on continuous measurement of the physical responses of the body using 

sensors. Subjective measurement is based on the use of rankings or scales to measure the amount 

of workload a person is feeling. Subjective workload measures rely on the question-answer type 

response to varying levels of workload. Performance measurement of workload relies on 
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examining the capacity of an individual by means of a primary or secondary task. An estimate of 

mental workload can be determined by measuring how well a person performs on the task, or 

how their performance worsens as workload increases. The summary table of the mental 

workload measurement techniques can be found in Figure 1.  

Criteria to select the appropriate mental workload measurement technique for the study follow 

O’Donnell and Eggemeier (1986) who suggests that:  

 The method must be consistently sensitive to changes in task difficulty or resource 

demand and distinguish between significant variations in workload. 

 The method should be diagnostic, indicating the source of workload variation and 

quantify contribution by the type or resource demand. 

 The method should not be intrusive or interfere with performance of the operator’s tasks, 

becoming a significant source of workload itself. 

 The method should be acceptable to the subjects, having face validity without being 

onerous. 

 The method should require minimal equipment that might impair the subject’s 

performance. 

Cain (2007) adds that: 

 The method should be timely and sufficiently rapid to apply to capture transient workload 

changes. 

 The method should be reliable, showing repeatability with small variance compared with 

main effects. 
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 The method should be selectively sensitive to differences in capacity demand and not to 

changes unrelated to mental workload. 

 Measurement techniques should be designed to capture the individual differences and 

reflect them in the values obtained from a sound theoretical framework. 

Moreover, Casali and Wierwille (1983) claim that; 

 The method should be insensitive to other task demands, such as physical activity beyond 

the conduct of the tasks.  

 

 

Figure 1. Summary figure of workload measures (Miller, 2001) 

 



 

   

25 

This literature review will focus on subjective workload measurement techniques, as it appears 

suitable that mental workload can be measured by subjective means. Subjective measures have a 

long history. They are popular since they are reliable and transferable to new systems or new 

task conditions. They also have high face validity. Moreover, for subjective workload measures 

there is no need for costly, time-consuming laboratory set-ups. Furthermore, Xie and Salvendy 

(2000) state that the most progress has been made in subjective measures. They also added that 

the analytical subjective models are the most attractive since they can be applied early in system. 

In general, input on workload for these models is gathered from subject matter experts (SMEs). 

To sum up, subjective measures are considered to be more practical, easiest, more flexible and 

most convenient form of evaluating workload (Yeh & Wickens, 1988).  

There are a number of different methods for subjective measures such as rating scales, 

questionnaires, or interviews, that system designer can use to collect subjective data of workload. 

Hart and Wickens (1990) subdivide rating scale methods into unidimensional and multi-

dimensional ratings. Unidimensional ratings are easy to understand and use but considered too 

simple to measure the complexity of workload. They lack combining ratings for predicting 

workload in different situations involving similar tasks. While unidimensional measures are 

more sensitive, multi-dimensional measures are more diagnostic. Moreover, most of the multi-

dimensional scales have a predictive capability through constructive modeling.  

The scales typically used to obtain multi-dimensional subjective ratings of workload are the 

subjective workload assessment technique (SWAT) (Reid & Colle, (1988); Reid, Potter, & 

Bressler (1989)); the National Aeronautics and Space Administration (NASA) task load index 

(TLX) (Hart & Staveland, 1988); and the visual, auditory, cognitive and psychomotor (VACP) 

model (McCracken & Aldrich, 1984). Description of each rating is shown in Table 3. According 



 

   

26 

to Wickens (2002), they are the most sensitive, most transferable, and the least intrusive 

techniques for workload estimation. For instance, SWAT and NASA TLX, can provide 

appropriate workload indications when a mock-up of the proposed system exists. On the other 

hand, the analytical techniques can be used to predict mental workload when no mock-up exists 

and the system is just a concept. The greatest value of such measures is to ensure that task 

demands can remain within the residual capacity region (Wickens, 2008). 

 

Table 4. Brief Explanation of Subjective Workload Measurement Scales 

Subjective workload 

measurement scales Reference Brief explanation  

Subjective workload 

assessment technique 

(SWAT)  

Reid et al. 

(1989) 

Uses three levels (low, medium, and high) for each of 

the three dimensions of time load, mental load, and 

physiological stress load to assess workload. The three 

steps that used to analyze workload:  1. Scale 

development, 2. Rate the workload. 3. Convert the 

scores into a 0 to 100 scale using the scale developed 

in step one.  

National Aeronautics 

and Space 

Administration 

(NASA) task load 

index (TLX) 

Hart & 

Staveland 

(1988) 

Uses six dimensions to assess workload: mental 

demand, physical demand, temporal demand, 

performance, effort, and frustration. The workload 

scale is obtained for each task by multiplying the 

weight by the individual dimension scale score, 

summing across scales, and dividing by the total 

weights. 

Visual, auditory, 

cognitive and 

psychomotor (VACP) 

model 

McCracken 

& Aldrich 

(1984) 

Any task performed by a person can be broken down 

into these components. Rating scales provide a relative 

rating of the degree to which each resource component 

is used.  The steps are: 1. Identify tasks that are 

necessary to operate the proposed system. 2. Identify 

the operators to system. 3. Assign tasks to operators. 4. 

Estimate workload values using the scales.   
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Subjective workload measures that support predictive modeling, such as VACP, usually focus on 

task demand in multiple channels. When coupled with task duration in simulations, these 

approaches produce aggregate measures that are sensitive to both task difficulty and time. When 

combined with task analysis, simulation models give the best results (Wickens, 2002). Some 

simulation software, such as IMPRINT, do have a mental workload component (i.e. VACP 

scale), with task competition based on multiple resource theory (developed by Wickens (2002)) 

and with workload channels defined to correspond to the different dimensions in multiple 

resource theory. With the help of these simulation models, the system designer can predict task 

and procedure execution and mental workload. These models contain the tasks needed to 

accomplish a particular process, the amount of time it takes each task to perform in the process, 

the sequence of the tasks, and the person who performs each task. Nevertheless, the time and 

effort needed for inputs (e.g. tasks, operators, time, and resources) are high. In addition, 

validation of the simulation model is a major issue.   

In general, the application of mental workload analysis is seen in military and health-care 

environments for critical processes that require immediate attention and decision-making.  

For instance, Carayon and Gürses (2005) proposed a conceptual framework of intensive care 

units nursing workload that defines causes, consequences and outcomes of workload. They 

identified four levels of nursing workload: unit level, job level, patient level, and situation level 

and discuss measures associated with each of the four levels. Holden et al. (2011) states that 

reviews of nursing workload measurement show that workload is defined most often in terms of 

staffing ratios, and added these ratios are not clearly representative of the nurses’ actual or 

perceived workload. Both Carayon and Gürses (2005) and Holden et al. (2011) concluded 

suggesting using situation level (subjective) workload measures, since errors may be best 
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described by task level workload. Moreover, they are reliable and transferable to new system or 

new task conditions. 

Lamoureux (1999) and Dixon, Wickens and Chang (2005) used a simulated laboratory setting in 

order to measure the workload of air traffic controllers and UAV operators, respectively.  

Mitchell (2009) used mental workload analysis to evaluate changes in a combat system by 

IMPRINT. She claims that when the program managers add new technologies, these 

technologies have the potential to change the Soldiers’ tasks. The tasks soldiers perform 

determine the soldiers’ workload level and their performance. Too little or excess workload 

decreases their performance. The design goal for optimum soldier performance is to have an 

evenly distributed, manageable workload. To meet this design goal, they evaluated the impacts 

of new technologies on soldier tasks, workload and performance. Mitchell, Samms, Henthorn, 

and Wojciechowski (2003) examined the mental workload to determine best allocation of some 

combat functions among two versus three soldier crews. Another application, described by 

Samms and Mitchell (2010), evaluates the workload of tank crewmembers. They also mentioned 

the importance of defining a workload threshold level in mental workload analysis. 

Mitchell (2009); Mitchell and Brennan (2009); Hunn, John, Cahir, and Finch (2008); Colombi, 

Miller, Scheiner, McGrogan, Long, and Plaga (2012); and Wong, Walters, and Fairey (2010) 

employed IMPRINT in their research. Plott, Quesada, Kilduff, Swoboda, and Allendar (2004) 

used popular human performance simulation software called C3TRACE, which is the 

abbreviation of Command, Control and Communication Techniques for Reliable Assessment of 

Concept Execution (Kilduff, Swoboda, & Barnette, 2002) in their study and discussed the 

theories behind the tool. 
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A summary of the approaches in mental workload analysis is found in Table 4. A checklist for 

the methods used in these applications is found in Table 5. 

 

Table 5. Summary of Metal Workload Analysis Methods and Applications  

Method Description  Application  Reference 

Conceptual 

Framework  

They identified four levels 

of nursing workload: unit 

level, job level, patient 

level, and situation level 

and discuss measures 

associated with each of the 

four levels. 

None included.  Carayon & 

Gürses (2005) 

Survey  A study carried out at six 

nursing units at two 

pediatric hospitals provided 

interesting possibilities for 

how different types of 

workload may relate to 

common patient and 

employee problems in 

pediatric clinical settings. 

To test this model, they 

analyzed results from a 

cross-sectional survey of a 

volunteer sample of nurses 

in six units of two 

academic tertiary care 

pediatric hospitals. 

Holden et al. 

(2011) 

Multiple 

resource 

theory-

simulation 

modeling  

They evaluated the impacts 

of new technologies on 

Soldier tasks, workload and 

performance 

They used IMPRINT as the 

simulation software. The 

model has a crew of four 

Soldiers operating the 

system (Abrams V2 SEP). 

Mitchell (2009) 
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Table 5. Continued 

Multiple 

resource 

theory- VACP -

simulation 

modeling 

They predicted the mental 

workload associated with 

the infantry rifle squad 

using the common 

controller to control a small 

unmanned ground vehicle 

within an infantry mission. 

They used IMPRINT as the 

simulation software. They 

proposed mitigation 

policies for the potential 

high workload situations.  

Mitchell & 

Brennan (2009) 

VACP They examined the mental 

workload to determine best 

allocation of some combat 

functions among two versus 

three soldier crews. 

The objective of this trade 

study was to examine the 

mental workload of the 

crew to determine the best 

allocation of the combat 

functions among two- and 

three-soldier crews. 

Mitchell, Samms, 

Henthorn, & 

Wojciechowski 

(2003) 

Multiple 

resource 

theory- VACP -

simulation 

modeling 

They evaluated the 

streaming video analysis 

portion of the geospatial 

intelligence process 

associated with an 

unmanned aircraft system, 

which provides information 

to a four person, military 

intelligence, geospatial 

analysis cell.  

They used IMPRINT as the 

simulation software. 

Recommendations are 

made regarding the level of 

staffing for this type of 

system, based on crew 

workload characteristics 

discovered.  

Hunn, John, 

Cahir, & Finch 

(2008) 

Multiple 

resource 

theory-

simulation 

modeling  

They propose a technique 

that can be applied in any 

workload analysis. 

They applied the technique 

on a case with tank 

crewmembers. 

Samms & 

Mitchell (2010) 

Multiple 

resource 

theory- VACP -

simulation 

modeling 

Using system architecture 

as the foundation, they 

explored the use of MRT to 

create representative 

workload models for 

evaluating operational 

system of systems 

concepts.  

They used IMPRINT as the 

simulation software. An 

example involving a single 

pilot controlling multiple 

remotely piloted aircraft is 

presented. 

Colombi, Miller, 

Schneider, 

McGrogan, Long 

& Plaga (2012) 
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Table 5. Continued 

Multiple 

Resource 

theory-

Simulation 

Modeling 

They discussed the theory 

and application of 

C3TRACE tool by 

developing two conceptual 

models. 

They used C3TRACE as 

the simulation software. In 

support of U.S. Army’s 

premier acquisition 

program, a baseline and 

alternate configurations of 

the Unit of Action 

Mounted Combat System 

Company Headquarters are 

represented and evaluated.  

Plott, Quesada, 

Kilduff, Swoboda, 

& Allender, 

(2004) 

Simulated 

Laboratory 

Setting 

They suggest that 

automation can help 

alleviate task interference 

and reduce workload, 

thereby allowing pilots to 

better handle concurrent 

tasks during single- and 

multiple-UAV flight 

control. 

36 licensed pilots flew both 

single-UAV and dual-UAV 

simulated military 

missions. Pilots were 

required to navigate each 

UAV through a series of 

mission legs in one of the 

following three conditions: 

a baseline condition, an 

auditory autoalert 

condition, and an autopilot 

condition. 

Dixon, Wickens, 

& Chang (2005) 

Simulated 

Laboratory 

Setting 

The study outlines an 

investigation of the impact 

of aircraft proximity and 

relationship data on the 

subjective mental workload 

of air traffic controllers. 

3 participants are used. 

Study shows that is it 

possible to quantify the 

relationship between 

aircraft relationships and 

mental workload and 

eliminate much of what 

was previously considered 

to be subjective variation. 

Lamoureux 

(1999) 

Multiple 

Resource 

theory- TLX –

VACP-

Simulation 

Modeling 

Discrete Event Simulation 

(DES) is used as the design 

method for crew 

performance of the 

NASA’s Orion Crew 

Vehicle (CEV). 

The results revealed that a 

majority of the DES model 

was a reasonable 

representation of the 

current CEV design. 

Wong, Walters, & 

Fairey (2010) 
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In summary, subjective methods are the most used methods in human engineering evaluation to 

evaluate the employee's rating of a task. These methods, especially those with rating scales, have 

various advantages in measuring workload relative to other approaches. They have good face 

validity and general applicability. The VACP method is the most preferred one because it is 

based on Multiple Resource Theory, developed by Wickens (2002). In multiple resource theory, 

individuals are viewed as having several different capacities of resources, these resources are 

differentiated according to information processing stages (encoding and central processing or 

responding), perceptual modality (auditory or visual) and processing codes (spatial or verbal) 

(Wickens, 2002). VACP's workload predictions are task-based predictions, and it is applicable 

through discrete event simulation (Keller, 2002). Furthermore, it can be used in system design 

early in the concept phase when design changes are less expensive and, therefore, more likely to 

be implemented (Mitchell, 2009). While the most popular commercial human performance 

simulation software seems to be IMPRINT (Mitchell & Samms, 2009), alternate commercial 

workload modelling tools are also available. Those tools include, but not limited to, the Man-

Machine Integration Design and Analysis System (Stanton, Salmon, Walker, Baber, & Jenkins, 

2006), the Queuing Network-Model Human Processor (Boles & Adair, 2001), Integrated 

Performance Modelling Environment (Law & Kelton, 1999), Command, Control, and 

Communications Modelling Environment (C3TRACE) (Kilduff, Swoboda, & Barnette, 2002), 

and the Integrated Performance Modelling Environment (IPME) (Dahn & Laughery, 1997).  
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Table 6. Summary of Methods, Considerations and Applications in Mental Workload Studies  

 Method/Tool Consider Application 

Reference 

Ranking 

Scales-

Methods 

Survey 
Conceptual 

Framework 
Simulator 

Simulation 

Modeling 

Multiple 

Resource 

Theory 

Real Life 

Application 

(real life data) 

Application Info 

Carayon & Gürses 

(2005)  
x x 

    
- 

Holden et al. (2011) 
 

x 
    

x 

Define the workload of 

nurses in six units of 

two academic tertiary 

care pediatric hospitals 

Mitchell, Samms, 

Henthorn, & 

Wojciechowski (2003) 

x 
   

x x x 

Evaluate crew of four 

soldiers operating the 

system (Abrams V2 

SEP) 

Mitchell (2009) x 
   

x x x 

Determine the best 

allocation of the combat 

functions among two- 

and three-soldier crews 

Samms & Mitchell 

(2010) 
x 

   
x x x 

A case with tank 

crewmembers 

Mitchell & Brennan, 

(2009) 
x 

   
x x x 

A case for infantry rifle 

squad using the 

common controller to 

control a small 

unmanned ground 

vehicle 

Hunn, John, Cahir, & 

Finch (2008) 
x 

   
x x 

 

A case on streaming 

video analysis portion 

of the geospatial 

intelligence process 

associated with an 

unmanned aircraft 

system 
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Table 6. Continued 

Colombi, Miller, 

Schneider, McGrogan, 

Long & Plaga (2012) 

x 
 

x 
 

x x 
 

An example involving a 

single pilot controlling 

multiple remotely 

piloted aircraft is 

presented 

Plott, Quesada, 

Kilduff, Swoboda, & 

Allender, (2004) 

x 
 

x 
 

x x 
 

A conceptual baseline 

and alternate 

configurations of the 

Unit of Action Mounted 

Combat System 

Company Headquarters 

are represented and 

evaluated. 

Dixon, Wickens, & 

Chang (2005)    
x 

   

36 licensed pilots flew 

both single-UAV and 

dual-UAV simulated 

military missions in a 

baseline condition, an 

auditory autoalert 

condition, and an 

autopilot condition 

Lamoureux (1999) 
  

x x 
   

A simulator is used 

with 3 participants. 

Wong, Walters, & 

Fairey (2010) 
x 

   
x x 

 

A discrete event 

simulation model 

developed for NASA’s 

Orion Crew Vehicle. 

VACP and TLX used to 

measure mental 

workload. The model 

validated by SMEs. 
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Table 6. Continued 

This Study x    x x  

A simulation 

optimization model is 

used to improve the 

performance of Air 

Interdiction Planning 

Mission work process 

by regarding the 

capabilities and mental 

workload of employees. 
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2.3. Simulation Optimization  

 

As discussed in the previous sections, task assignment problems generally are solved with 

deterministic optimization and mental workload analyses are studied by simulation models. In 

deterministic optimization, the uncertainty is ignored in order to come up with a unique and 

objective solution. On the other side, simulation approaches generally answer "what if" questions 

and it is time consuming to find optimal or near optimal solutions. According to Kelton (2000) 

an unplanned experimentation with a simulation model can often be inefficient. Alternatively, 

carefully planned simulation studies can give important information without unnecessary amount 

of computational effort time. Building on the capabilities of general simulation modeling, 

however, one can find the optimal setting of input variables through simulation optimization. 

The aim of the simulation optimization approach is to find the best input variable values from 

among all possibilities without explicitly evaluating each possibility (Carson & Maria, 1997). In 

other words, the objective is to minimize the resources spent while maximizing the information 

obtained from the simulation model. The differences of the approaches can be seen in Figure 2.  

 

 
 

Figure 2. Simulation Model vs. Simulation Optimization Model (Carson & Maria, 1997) 
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The optimization of a simulation models starts with the need to find a set of model specifications 

such as input parameters and/or structural assumptions that leads to the optimal performance. In 

general, the range of parameter values and the number of parameter combinations are too large to 

test all possible scenarios. For example, many real world problems are too complex to be 

modeled by tractable mathematical formulations that are at the core of pure optimization 

methods (e.g. scenario optimization, robust optimization). To address such problems, simulation 

modeling is a way to guide the search for good solutions. Furthermore, pure optimization models 

are powerless in their abilities to capture all the complexities and dynamics of a highly 

sophisticated system. Thus, one must resort to simulation, which cannot easily find the optimal 

solutions. Simulation optimization resolves this problem of by merging the characteristics of 

pure optimization modeling and the use of computational simulations (Fu, 2002). 

Simulation optimization can efficiently handle a much larger number of scenarios than 

traditional optimization approaches. Modern simulation optimization tools are designed to solve 

optimization problems of the form (Better et al., 2008):  

Minimize F(x) (Objective function) 

Subject to: Ax < b (Constraints on input variables) 

gl < G(x) < gu (Constraints on output measures) 

l < x < u (Bounds) 

 In the context of simulation optimization, a simulation model can be thought of as a 

“mechanism that turns input parameters into output performance measures” (Law & Kelton, 

1991). In other words, the simulation model is a function (whose explicit form is unknown) that 

evaluates the merit of a set of specifications, typically represented as set of values. Here the 

vector x of decision variables includes variables that range over continuous values and variables 
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that only take on discrete values. F(x) is the objective function, which is generally very complex. 

For example, one may be interested in measuring if the likelihood that a cycle time of a process 

will be lower than a desired duration. Known are the inequality Ax ≤ b is usually linear where 

the coefficient matrix A and the right-hand-side values corresponding to vector b. The 

constraints represented by inequalities of the form gl ≤ G(x) ≤ gu impose simple upper and/or 

lower bound requirements on an output function G(x) that can be linear or non-linear. The 

bounds gl and gu are known constants. All decision variables x are bounded and some may be 

restricted to be discrete. Each assessment of F(x) and G(x) needs an execution of a simulation of 

the system.  

The optimization procedure uses the outputs from the system evaluator, which measures the 

merit of the inputs that were fed into the model. One of the most preferred optimization methods 

is based on metaheuristic search algorithms.  

The main optimization approaches used in simulation-optimization include random search 

(Andradottir, 2006), response surface methodology (Barton, 2005), gradient- based procedures 

(Fu, 2005), ranking and selection (Kinm & Nelson, 2005), sample path optimization 

(Goodfriend, 1995) and mostly metaheuristics (Ólaffson, 2005) including tabu search (Dengiz & 

Alabas, 2000; Yang, Kuo, & Chang, 2004), genetic algorithms (Azadivar & Tompkins, 1999; 

Zen, Wang, Hu, & Chang, 2014; Zeng & Young, 2009; Daniel & Rajendran, 2005; Yeh & Lin, 

2007; McCormack & Coates, 2015; Ammeri, Dammak, Chabchoub, Hachicha, & Masmoudi, 

2013; Ghazavi & Lotfi, 2016; Persson, Grimm, Ng, Lezama, Ekberg, Falk, & Stablum, 2006) 

and scatter search (Keskin, Melouk, & Meyer, 2010) or combination of several metaheuristics 

(Al-Aomar, 2006; Klassen & Yoogalingam, 2009; He, Huang & Chang, 2015).  Table 7 shows 

the major categories of simulation optimization methods (Andradóttir, 2002; Carson & Maria, 
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1997; Fu, 2002; Kelton, 2000). Note that there is a huge application domain for simulation 

optimization technique from operations, manufacturing, and logistics to medicine and biology. A 

recent detailed review of algorithms and applications can be found in Amaran, Sahinidis, Sharda, 

and Bury (2016). 

 

Table 7. Simulation Optimization Methods 

Gradient Based Search 

Methods 

Finite Difference Estimation  

Likelihood Ratio Estimators 

Perturbation Analysis 

Frequency Domain 

Experiments 

Random Search/Heuristic 

Methods 

Greedy Heuristics 

Genetic Algorithms 

Evolutionary Strategies 

Simulated Annealing 

Tabu Search 

Scatter Search 

Simplex Search 

Statistical Methods 

Importance Sampling 

Ranking and Selection 

Multiple Comparison  

Stochastic Optimization 

Response Surface Methodology 

Sample Path Optimization 

 

 

Moreover, there are several simulation optimization commercial software programs based on 

various optimization methodology such as AutoStat, OptQuest, OPTIMIZ, SimRunner, and 

WITNESS Optimizer (Table 8). The current commercial software is a good start, but fails in two 
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cases (Fu, 2002). First, algorithms that work extremely well are too specialized to be practical, or 

algorithms that apply very generally often converge too slowly in practice. Second, they do not 

guarantee local or global convergence (Amaran et al., 2016). Consequently, the optimization 

approach should be selected according to the problem on hand. In some cases, commercial 

software can be helpful but one should be aware of their weaknesses. 

 

 Table 8. Commercial Simulation Optimization Packages 

Optimization Package  

Simulation Software 

Supported  

Optimization 

Methodology  

AutoStat AutoMod Evolutionary Algorithms 

Evolutionary Optimizer ExtendSim Evolutionary Algorithms 

OptQuest 

FlexSim, @RISK, Simul8, 

SIMPROCESS, Anylogic, 

Arena, Crystal Ball, 

Enterprice Dynamics, 

ModelRisk 

Scatter Search, Tabu 

Search, Neural Networks 

SimRunner 

ProModel, MedModel, 

ServiceModel 

Genetic Algorithms, 

Evolutionary Algorithms 

RISKOptimizer @RISK  Genetic Algorithm 

WITNESS Optimizer  WITNESS 

Simulated Annealing, 

Tabu Search, Hill 

Climbing 

Plant Simulation 

Optimizer Siemens PLM Software Genetic Algorithm  

ChaStrobeGA Stroboscope  Genetic Algorithm  

Global Optimization 

Toolbox SimEvents Matlab 

Genetic Algorithms, 

Simulated Annealing, 

Pattern Search  

 

 

mailto:.@RISK
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To summarize this section, the literature was reviewed in three parts; the assignment problem in 

work process design, mental workload analysis for work processes, and simulation optimization 

techniques. It has been found that task assignment problems for organizations are generally 

solved with deterministic optimization. However, the nature of an organization that embraces 

work processes is stochastic. In deterministic optimization, the uncertainty is ignored in order to 

come up with a unique and objective solution. On the other hand, mental workload analyses are 

generally studied by simulation models. However, simulation approaches generally answer 

"what if" questions and it is time consuming to find optimal or near optimal solutions. Building 

on the capabilities of general simulation modeling, however, one can find the optimal setting of 

input variables through simulation optimization techniques. The aim of the simulation 

optimization approach is to find the best input variable values from among all possibilities 

without explicitly evaluating each possibility. The main optimization approaches used in 

simulation-optimization include random search, response surface methodology, gradient- based 

procedures, ranking and selection, sample path optimization and mostly metaheuristics.  

Mental workload measures are found to be appropriate in order to measure the workload of the 

employees for work processes in critical time junctions. Subjective mental workload measure 

methods are the most used methods in human engineering evaluation to evaluate the employee's 

rating of a task. These methods have good face validity and general applicability. The VACP 

method is the most preferred one because it is based on Multiple Resource Theory.  

In order to solve the agent-task assignment problem for a work process to improve performance, 

a simulation model that supports VACP measure will be used in coordination with a 

metaheuristic search algorithm optimization engine.  
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3. METHODOLOGY 

 

As reported in the literature review, work processes in general consist of different tasks, which 

require different expertise. Employees usually have various degrees of qualifications and their 

performance may vary for different tasks. Therefore, the performance outcome of an 

organization depends greatly on which tasks are assigned to which employees. Moreover, 

measurement methods and analysis of workload can improve the performance of employees, as 

well. 

In a work process, the employee allocation procedure can be optimized by finding the set of 

skills that provide the optimal candidate for a particular task. This research claims that the right 

matching of employee-task is as important as not overloading the employees. The aim is to 

optimize performance by making sure that the employees stay under the mental workload limit, 

in other words they are not overloaded.  

The upper workload limit represents the point where the proposed system's operator (employee) 

will be considered overloaded and cannot accomplish the tasks successfully (Huey & Wickens, 

1993; Wickens, 2002). The literature review indicates that there is no “one” correct workload 

threshold and it should be defined according to the task process and workload measurement 

methodology considered. The upper workload limit can be investigated by analyzing or 

simulating the system (work process) under normal operational tempo (representing the baseline 

operation). Also, the upper workload limit can be determined by subject matter experts that are 

familiar with the work process.  

The chosen mental workload measurement technique for this study is VACP. It is a subjective 

method based on MRT with good face validity and general applicability. Moreover, VACP's 
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workload predictions are task-based predictions, it can be used even when no mock-up systems 

exist and it is applicable through discrete event simulation (Keller, (2002); Mitchell, (2009)). In 

addition, since the predictions are task-based, the workload of a task and workload threshold 

level does not change across agents. 

In most of the VACP studies, 28 is used as the upper workload limit (Mitchell, (2000); 

Pomranky & Wojciechowski, (2007)). The logic behind this value can be explained as follows: 

According to the VACP scale, people have a limited set of resources available for mental 

processes. These resources can be thought of as a pool of energy that is used for a variety of 

mental operations, from sensory-level processing to meaning-level processing. The highest 

workload value of a resource (visual, auditory, cognitive, psychomotor) can be set is “7”. These 

VACP scales can be found in Table 7. Since four resources are used and they can be set to 7; the 

highest possible total workload of a task is 28 (4x7). As a result, based on the task process 

studied, the upper workload limit can be set to 28 or a value higher than 28 depending on the task 

process (Mitchell, 2009).  

This research focuses on a work process with a team operating under a high operational tempo. 

Operational tempo can be defined as the frequency of the work orders. Accordingly, “high 

operational tempo” refers to the very frequent arrival of work orders. A work process with a high 

operational tempo is a collection of related structured tasks that produce a specific service or 

product, or serve a particular goal or mission, and should be finished as fast as possible. A work 

team consists of agents providing that particular service, product, goal or mission in an 

organization. Agents can be defined as a person that has a set of capabilities with different levels 

and can be assigned to complete one or more tasks (depending on the problem). The duration 

that the agent can finish a task depends on his or her capabilities and the capabilities required by 



 

   

44 

the task that he/she is working on. Task is a specific unit of work characterized by a mental 

workload demand, and required capability levels.   

Measuring the performance of work processes is a challenging one and there is no universal 

measure for performance, which is applicable to all work processes (Kamrani, Ayani, Moradi, & 

Holm, 2009). For this type of work process, the output that helps to measure the performance is 

timeliness. Timeliness is the key to the success for those critical processes such as emergency 

room tasks or military intelligence tasks. The average duration to finish a work process will be 

used to determine the timeliness. The aim is to minimize the average duration of the work 

process.  

The accuracy of the work process depends on the agents. For the agent to be successful he/she 

should be capable enough and be able to handle the tasks. In other words, his capability levels 

should be equal or more than the required capability levels by the task. If the agent is not capable 

enough, he/she will not be successful and it will take more time to finish the task. Additionally, 

agent’s workload should be under the workload threshold. Once he exceeds the workload 

threshold, he will be prone to making errors. Note that the workload of the agent affects the 

timeliness as well since an agent operating at the threshold workload level can’t start a new task 

until the current task is finished, i.e., until there is enough residual workload capacity for the next 

task (because of the workload threshold constraint imposed to the problem). Therefore, in the 

assignment process, both capability level differences (the difference between agent’s capability 

level and the capability level required by the task) and agents’ workload levels affects the 

timeliness of the output. Timeliness is the surrogate for both variables (capability level 

differences and workload levels). The objective is to find the agent-task pairs in order to 

minimize the average duration of the task process. 
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The variables of this problem can be listed as follows:  

Constants:  

 A work process  

o A fixed ordered sequence of tasks (agents cannot complete tasks other than in the 

prescribed order) 

o Each task is defined by required capability types and levels  

o Each task has mental workload demands (according to the VCAP scale) 

 A team 

o Each agent has capability types and levels  

o Each agent has an upper mental workload limit (workload threshold level which is 

the same for every agent in the work process) 

Independent Variables:  

 

 Task-agent assignments  

 

Constraints: 

 

 Instantaneous Mental Workload Threshold (set-up in simulation model): Agents should 

stay under the defined upper mental workload level (mental workload threshold). An 

agent cannot start an additional parallel task if it is going to increase the mental workload 

above the mental workload threshold level. 

 Agent-Task Assignment Constraint (set-up in optimization engine): 

An agent can work on no tasks, one task, or more than one task, and a task can only be 

assigned to one agent. 

Dependent Variables:  
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 Timeliness of work process: the objective is to minimize the average duration of the work 

process 

To provide a simulation optimization environment with which to study task assignment and 

mental workload tradeoffs in a work process with a work team, a two-step model that includes 

(1) "Optimization Engine" and (2) "Simulation Model" will be used (Figure 3). This model will 

evaluate the hypothesis that the developed simulation-optimization model solves the task-

employee assignment problem in order to minimize the duration in a reasonable time and 

efficient way. 

In general, deterministic optimization models disregard the uncertainty in order to come up with 

a unique and objective solution. However, the nature of a work processes is stochastic, therefore 

the second step will provide a simulation model and be used to evaluate the results of the inputs 

suggested by the optimization part; it also permits the inclusion of various sources of uncertainty 

and variability into tasks that impact work process outcomes. The sources of uncertainty and 

variability are provided by the task completion time and inter-arrival time of work orders. As a 

result, it affects both the timeliness of the work process and the incidents when an agent is 

parallel tasking, which defines the instantaneous workload of an agent. Based on the results 

obtained from the simulation part, the optimization part will suggest improved input variables for 

the simulation part.  This iterative process will continue until the stopping criteria are satisfied. 

The stopping criteria for this problem are based on acceptable outcomes of the simulation model. 

The output of this two-step model will show the timeliness (average duration) of the work 

process while mental workload of each employee stays under the threshold.  
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Generally, in simulation optimization studies, the iterative process is stopped when convergence 

is achieved, which means there is no improvement on the best solution found so far after a 

defined number of iterations. In this study, a convergence factor and a maximum number of 

iterations will be defined for the stopping criteria.  

 

 

 

Figure 3. Simulation-Optimization Approach  

 

This simulation optimization approach will improve timeliness (which minimizes average 

duration) by making more efficient task assignments and keeping the agents under workload 

threshold to prevent them from making mistakes. Moreover, an experiment will be designed and 

executed to provide guidance on the tradeoffs between task assignment and workload in terms of 

different levels of operational tempo (the inter-arrival rate of work orders). The next section 

explains the details of these two parts, the simulation model and the optimization model with the 
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stopping criteria. Moreover, the software requirements in order to develop such simulation-

optimization approach are discussed and the software pair used in this study is described.  

3.1 Simulation Optimization Approach for Work Process Design  

 

3.1.1 Methodology for Optimization Engine of Task Assignment 

 

As mentioned in the literature review section, the general simulation optimization problem form 

(Better et al., 2008) is as follows:  

Minimize/ Maximize F(x) (Objective function) 

Subject to: Ax < b (Constraints on input variables) 

gl < G(x) < gu (Constraints on output measures) 

l < x < u (Bounds) 

  

In this study, we are dealing with a generalized assignment problem (GAP). GAP involves 

finding the minimum cost assignment of n tasks to m agents such that each task is assigned 

exactly to one agent, subject to agent's available capacity. It can be defined as follows (Chu & 

Beasley, 1997): 

Let I = {1,2, … . , m}  be a set of agents, and let J = {1,2, … . , n}  be a set of tasks. For i ϵ I , j ϵ J 

define cij as the cost of assigning task j to agent i (or assigning agent i to task j), rij as the 

resource required by agent i to perform task j, and bi as the resource availability (capacity) of 

person i. Also, xij is a 0-1 variable that is 1 if agent i performs task  j and 0 otherwise. The 

mathematical formulation of the GAP is: 

Minimize   ∑ ∑ 𝑐𝑖𝑗𝑗𝜖𝐽𝑖𝜖𝐼 𝑥𝑖𝑗 (1) 

Subject to 

∑ 𝑥𝑖𝑗 = 1,𝑖𝜖𝐼    ∀𝑗𝜖𝐽 (2) 
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∑ 𝑟𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖,𝑗𝜖𝐽    ∀𝑖𝜖𝐼 (3) 

𝑥𝑖𝑗 𝜖 {0,1} , ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽  (4) 

 

Equation (2) ensures that each job is assigned to exactly one person and Equation (3) ensures that 

the total resource requirement of the jobs assigned to a person does not exceed the capacity of 

the agent. Equation (4) is the binary variable constraint. 

Table 9 shows the adjustment of the GAP to the simulation optimization problem form of the 

task-agent assignment problem at hand. Equation (5) is the objective function that represents 

timeliness, which minimizes the average duration of the work process. Equation (6) ensures that 

each job is assigned to exactly one agent. The function 𝐺(𝑥𝑖𝑗 ) shows the instantaneous mental 

workload level of each agent. Equation (7) ensures that the instantaneous workload level of an 

agent stays below the upper bound (𝑔𝑢) and this constraint is handled in the simulation model. 

Each assessment of 𝐹(𝑥𝑖𝑗 ) and 𝐺(𝑥𝑖𝑗 ) needs an execution of a simulation of the system. 

Equation (8) ensures that 𝑥𝑖𝑗  is a binary variable. 

 

Table 9. Formulation of GAP for Simulation Optimization  

GAP GAP for Simulation Optimization  

Minimize   ∑ ∑ 𝑐𝑖𝑗𝑗𝜖𝐽𝑖𝜖𝐼 𝑥𝑖𝑗 Minimize 𝐹(𝑥𝑖𝑗 )  (5) 

Subject to:  ∑ 𝑥𝑖𝑗 = 1,𝑖𝜖𝐼    ∀𝑗𝜖𝐽 Subject to:  ∑ 𝑥𝑖𝑗 = 1,𝑖𝜖𝐼    ∀𝑗𝜖𝐽 (6) 

∑ 𝑟𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖,𝑗𝜖𝐽    ∀𝑖𝜖𝐼  𝐺(𝑥𝑖𝑗 ) <  𝑔𝑢     ∀𝑖𝜖𝐼 

𝐻𝑎𝑛𝑑𝑙𝑒𝑑 𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙  

(7) 

𝑥𝑖𝑗 𝜖 {0,1} , ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽 𝑥𝑖𝑗 𝜖 {0,1} , ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽 (8) 
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The optimization procedure uses the outputs F(𝑥𝑖𝑗 ) from the system evaluator, which measures 

the merit of the inputs that were fed into the model, see Figure 4.  

The literature review indicates that one of the mostly preferred optimization procedures for 

simulation optimization problems is based on metaheuristic search algorithms. The metaheuristic 

optimizer chooses a set of values for the input parameters and uses the responses generated by 

the simulation model to make decisions regarding the selection of the next trial solution. Chu and 

Beasley (1997) found that one of the heuristics that have been superior to others for solving GAP 

is the genetic algorithm (GA). Moreover, GA is a popular method and has proved to be effective 

algorithm in simulation optimization studies. 

 

  

Figure 4. Graphical Illustration of Optimization Engine  
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GA was first introduced by Holland (1975). GA is an intelligent probabilistic search algorithm 

which simulates the process of evolution by taking a population of solutions and applying 

genetic operators in each reproduction. Each solution in the population is evaluated according to 

some fitness measure. Highly fit solutions in the population are given chances to reproduce. New 

offspring solutions are generated and unfit solutions in the population are replaced. This 

evaluation-selection-reproduction cycle is repeated until a satisfactory solution is found.  

Genetic algorithms deal with a population of solutions and tend to manipulate each solution in a 

simple way. In a GA, a potential solution to a problem is represented as a set of parameters 

known as a gene. These parameters are joined together to form a string of values known as a 

chromosome. A good representation scheme is essential in a GA. It should clearly define 

meaningful crossover, mutation and other problem-specific operators in order to minimize 

computational effort is involved in these procedures.  

The detailed description of developed GA for the simulation optimization assignment problem is 

as follows:  

Chromosome definition: An efficient representation is used in which the solution structure is an 

ordered structure (n-dimensional vector) of integer numbers. These integer numbers identify the 

agents, as assigned to vector elements denoted by the tasks (see Figure 5). This representation 

ensures that all the equality constraints in equation (6) are automatically satisfied since exactly 

one agent is assigned to each job.  
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Task  1 2 3 4 5 … n-1 N 

Agent  2 1 5 M 6 … 3 10 

 

Figure 5. Representation of an Individual's Chromosome 

 

Initialization of population: N randomly constructed initial solutions are generated by randomly 

assigning an agent to a task without allowing duplicate solutions in the population.  

Fitness evaluations of chromosomes: The fitness 𝑓𝑘 , of solution k is equal to its objective 

function value 𝐹(𝑥𝑖𝑗 ) which is the output from the simulation (average duration of the work 

process).  

𝑓𝑘 =  𝐹(𝑥𝑖𝑗 ) 

The simulation model produces the fitness values for the GA. This fitness values are read and 

each fitness value assigned to each solution in the population.  

Crossover: The binary tournament selection method is used. In a binary tournament selection, 

two individuals are chosen randomly from the population. The more fit (smaller fitness value) 

individual is then allocated a reproductive trial. In order to produce a child, two binary 

tournaments are held, each of which produces one parent. A child solution is created by first 

applying a crossover operator to the selected parents. The one-point crossover operator is used, 

in which a crossover point is selected randomly and the child solution will consist of the first p 

genes taken from the first parent and the remaining (n - p) genes taken from the second parent, or 

vice versa with equal probabilities.  
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Moreover, a similarity ratio is defined in order to keep the diversity of the solutions in the 

population. Based on this ratio, if a solution is similar to one of the solutions in the population 

(based on the ratio defined; such as if the ratio is 0.1, then it is a solution that has only one 

different gene from another solution in a 10-member population), it is not allowed to enter in the 

population and a new binary tournament is started.  

In the population replacement scheme, the individual in the population with the lowest fitness is 

replaced. Note that a duplicate child is not allowed to enter the population.  

Mutation: The crossover procedure is followed by a mutation procedure. This mutation 

procedure involves exchanging elements in two randomly selected genes (i.e. exchanging 

assigned agents between two randomly selected jobs). In addition to that, “mutation increase 

rate” that increases the mutation rate gradually (by 0.01%) as every time the algorithm 

approaches half way to the convergence (convergence factor/2) is introduced.  

Termination Condition: The above-mentioned evaluation process is repeated until the 

termination conditions have been reached (Figure 6). The termination conditions for this process 

are a convergence factor and a maximum allowed number of iterations. The convergence factor 

is achieved when the best individual objective value has not been updated in 100 successive 

iterations. The maximum number of iterations is set to 1000. 
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Figure 6. Termination condition flowchart of simulation optimization approach 

 

Note that mutation and crossover processes are used to avoid local optimum solutions. 

Moreover, additional constraints, namely similarity rates and mutation increase rate, are added 

to the genetic algorithm in order to keep the diversity of the solutions in the population high 

which helps avoid the local optimums as well. It is important to mention that the right population 

size (PS), crossover rate (CR) and mutation rate (MR) should be set in order to increase the 

effectiveness of the algorithm. These values can be set by calculating relative changes for 

different sets of PS, CR, MR. 
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3.1.2 Methodology to develop a Simulation of a Work Process 

For this particular problem, simulation software that has human performance modeling capability 

is an appropriate one. The steps followed in order to develop a human performance work 

processes simulation model are shown in Figure 7, and the explanation of the steps are as 

follows:  

2.1. Develop Work Process Flow:  

The simulation model for a work process is comprised of a series of tasks, which are 

connected as a network. As a result, the work process flow is created as a network 

diagram. All the branching rules, prerequisites in work process flow are defined in this 

step. Note that the flow of the tasks is fixed and the agents cannot complete tasks other 

than in the prescribed order. Moreover, required capability and capability levels for each 

task are defined as variables.  

2.2. Create Work Team:  

For this step, the agents that are available to participate in the work process are defined. 

Each available agent is created separately so that in the following steps they will be ready 

to be assigned to tasks (in step 2.6). In addition, their capabilities and capability levels are 

defined as variables.  
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Figure 7. Steps for Developing a Work Process Simulation  
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2.3. Enter Task Durations and Task Duration Moderators:  

The length of time each task usually takes is entered as a probabilistic distribution 

including the variables that will indicate the change in task duration according to 

difference between capability level of agent and required capability level by task. If the 

agent’s capability level is lower than the required capability level by task, the duration of 

the task is increased by the percentage (k) that the developer of the model defined for 

each capability level difference; this percentage is called capability level difference 

coefficient. Moreover, to avoid an agent to be assigned to a particular task or to prevent 

an agent from being assigned at all, a very big capability level difference can be defined 

in advance.  

2.4. Enter Workload Values and Workload Threshold Constraints: 

In this step, the VACP workload scale that are consistent with well-known and 

documented theories of workload prediction, including the Multiple Resource Theory 

(MRT) (Wickens, 2002) is used. The rating scale of VACP can be found in Table 10. The 

corresponding workload values for each resource from the scale that shown in Table 10 is 

entered as a variable for each task. The total mental workload demand of a task is the sum 

of the entered workload values of each resource. The mental workload threshold, which 

is the same across the agents, is defined. It is important to remember that the mental 

workload threshold represents the point where the proposed system's operator will be 

considered overloaded and cannot accomplish the tasks successfully. This constraint 

enforces the rule that the agents cannot start to a new task if they do not have enough 

remaining residual capacity. The residual capacity is the difference between agent’s 
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instantaneous workload level and the workload threshold level. As soon as an agent has 

enough residual capacity, he/she can start to a new/parallel task. 

 

 

Table 10. VACP workload estimation scales  

Workload Demand Value 

Visual  

3.0 - Visually Register/Detect 

3.0 - Visually Inspect/Check 

4.0 - Visually Locate/Align 

4.4 - Visually Track/Follow 

5.0 - Visually Discriminate 

6.0 - Visually Scan/Search/Monitor 

5.1 - Visually Read 

Auditory  

1.0 - Detect/Register Sound  

2.0 - Orient to Sound (general) 

4.2 - Orient to Sound (selective) 

4.3 - Verify Auditory Feedback 

3.0 - Interpret Semantic Content (speech) 
Simple (1-2 words) 

6.0 - Interpret Semantic Content (speech) 
Complex (sentence) 

6.6 - Discriminate Sound Characteristics 

7.0 - Interpret Sound Patterns 

Cognitive 

1.0 - Automatic (simple association) All values 
below 7.0 map to 

1.2 - Alternative Selection Solving 

3.7 - Sign/Signal Recognition 

4.6 - Evaluation/Judgement (single aspect) 

5.0 – Rehearsal 

5.3 - Encoding/Decoding, Recall 

6.8 - Evaluation/Judgement (several aspects) 

7.0 - Estimation, Calculation, Conversion 

Fine Motor 
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Table 9. Continued 

2.2 - Discrete Actuation (button, toggle trigger) 

2.6 - Continuous Adjustive (flight control, sensor 
control) 

4.6 - Manual (tracking) Fine Motor Discrete 

5.5 - Discrete Adjustive (rotary, vertical thumb 
wheel, lever position) 

6.5 - Symbolic Production (writing)  

7.0 Serial Discrete Manipulation (keyboard 
entries) 

Gross Motor 

1.0 - Walking on Level Terrain  

2.0 - Walking on uneven terrain 

3.0 - Jogging on Level Terrain  

3.5 - Heavy Lifting 

5.0 - Jogging on Uneven Terrain 

6.0 - Complex Climbing 

 

 

2.5. Define Operational Tempo:  

Operational tempo is the frequency of the inter-arrival times of the work orders. As the 

inter-arrival times of the work orders decreases, operational tempo increases. 

Additionally, as the operational tempo increases, the likelihood of an agent working on 

parallel tasks increases (which increases the likelihood of increasing his workload level). 

In this step, the operational tempo ranges can be defined according to the experimental 

design. 

2.6. Assign Tasks to Operators: 

Creation of the logic that changes the assignments according to the suggestions from the 

optimization module is necessary. According to the task-agent pairs from the 

optimization module, each task will be assigned to the suggested agent. The assignments 
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are made automatically depending on the communication structure between simulation 

model and optimization engine, i.e., the assignments can either be read from a text file or 

obtained directly from the optimization engine (in case there’s a developed connection 

structure between optimization engine and simulation model). Explained in section 3.2 

are the software requirements in order to achieve this communication.   

2.7. Run the Model and Obtain Results: 

During execution, the simulation model calculates task durations (implementing the task 

time moderators) and the workload of an agent over time. The output file shows the 

average duration of the work process, which is the indicator of the timeliness.  

3.2 Software Requirements  

There are two different requirements in order to develop a simulation optimization that assign 

agents to tasks and consider agents’ capabilities and mental workload levels. These are the 

“capability of the simulation software” and “communication requirements between optimization 

engine/code (language that is used) and simulation model”.  

3.2.1 Required capability of the simulation software  

In order to develop a simulation model for a work process that captures workload level of agents 

and reflect the changes in agent’s capability levels on task durations, the following steps should 

be able to be implemented using the simulation software:   

 Create task network  

 Assign agents to tasks  

 Assign capabilities and capability levels to agents  
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 Assign required capabilities and capability levels to tasks  

 Define task time moderators (capability levels impacts the duration of the task)  

 Assign workload to tasks  

 Calculate instantaneous workload levels of the agents  

 Calculate average duration of the work process 

If these criteria can be satisfied with the simulation software on hand, the second step is finding 

the right optimization code and/or tool in order to achieve the communication between the two.  

3.2.2 Communication requirements between simulation and optimization  

There are three crucial requirements in order to achieve the communication between the 

simulation and the optimization engine. These requirements can be summarized as follows: 

1. Optimization code or software starts the simulation run automatically: The simulation 

program should be reachable from the command line on the computer (should be able to be 

saved as an .exe file) or has a coding environment or add-in that has already been integrated 

(such as ARENA and Visual Basic for Applications (VBA)). Most of the coding language can 

call a command line prompt (in Windows). That way the simulation run can be started from the 

command line. 

2. Optimization receives output from simulation: The optimization engine should be able to get 

the fitness values from the simulation. This can be achieved either reading the simulation outputs 

from a file that the simulation model created after each run or, in the case where an add-in is 

available, the optimization engine can be integrated with the simulation model so simulation 

model can pass the output values to optimization engine. 
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3. Simulation receives input from optimization: The simulation model should be able to get the 

agent-task configuration list from the optimization. It can be achieved either by reading the 

configuration list from a file that the optimization engine created or the optimization engine 

should be integrated to the simulation model through an add-in, so that optimization engine can 

pass the configuration list to simulation model. 

3.2.3. The chosen simulation software and coding language pair for this study: ARENA-

JAVA 

For this study, ARENA was the preferred simulation-modeling tool. ARENA because; first, it is 

flexible enough to model a work process and satisfies all the requirements explained in section 

3.2.1. Secondly, it runs from the command line of Windows. Lastly, it has the capability of 

reading from files and writing to files.    

ARENA software’s underlying language called SIMAN. When the model developed in ARENA, 

ARENA produces SIMAN code. Then, the SIMAN code is compiled and executed. First, two 

files associated with the SIMAN program are generated. These are the mod (model) and exp 

(experiment) files. The mod file contains the SIMAN code of the flowchart modules in an 

ARENA model window. The exp file contains the SIMAN code for the data modules and 

simulation run control parameters that are used during the execution of the simulation. ARENA 

software uses MODEL.exe to generate “m” file from mod file and EXPMT.exe to generate “e” 

file from exp file. These generated files are used to create “p” file by combining m and e files by 

LINKER.exe. The p file is the complete simulation model (flowcharts, data modules and 

simulation control parameters) that can be executed. The simulation model (p file) can be 

executed using SIMAN.exe. MODEL.exe, EXPMT.exe, LINKER.exe and SIMAN.exe files and 
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necessary dll files can be found under the installed ARENA software file which located in 

directory the user downloaded ARENA. The flowchart of creating and executing these necessary 

files can be found in Figure 8. 

Once the simulation model in ARENA completed, mod and exp files can be written using Run> 

SIMAN> Write, then from the optimization engine the necessary exe files can be called using 

command line in windows and necessary input files can be entered to these exe files. The 

sequence in optimization engine should be as follows:  

1. Create input file for simulation  

2. Run simulation (Call exe files and enter input files) 

3. Read the output file generated by the simulation model 
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Figure 8. Necessary files to run an ARENA simulation model through SIMAN.exe (Seppanen, 

2016) 

 

As the optimization engine, Genetic Algorithm is coded in JAVA. JAVA is an object oriented 

language that allows creating modular programs and reusable codes. The “cmd line” can be 

accessed through coding in JAVA then the necessary exe files can be run. Moreover, JAVA is 

platform independent. It can be moved easily from one computer system to another. 

Furthermore, it is easy to write, compile and debug than other programming languages.  

To summarize, the stages of developing a simulation optimization approach that would improve 

timeliness of a work process in order to minimize average duration by making more efficient 
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task assignments and keeping the agents under workload threshold to prevent them from making 

mistakes is explained. This method is comprised of two parts: the simulation model, and the 

optimization engine with stopping criteria. A genetic algorithm will be used for the optimization 

engine.  Chromosome definition, initialization of population, evaluation of chromosomes, 

crossover and mutation methods that will be used for this algorithm are explained in detail.  The 

stopping criteria for this process are the convergence factor, which is best individual objective 

value not updated in 100 successive iterations, and maximum number of iterations, which is 

1000. Presented are the steps followed in order to develop a human performance work processes 

simulation model. These steps are; develop work process flow, create work team, enter task 

durations and task duration moderators, enter workload values and workload constraints, define 

operational tempo, assign task to operators, run the model and obtained results. In order to 

develop this method; GA based optimization engine will be coded in JAVA and the human 

performance simulation model will be developed in ARENA. The two-way communication 

between optimization engine and simulation model will be achieved by text files. In the next 

chapter, an example work process called Air Interdiction Planning Mission will be used to 

develop the GA based simulation optimization tool by following the steps explained in the 

current chapter. 
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4. MODEL DEVELOPMENT AND ALTERNATIVES 

In the previous chapter, a methodology was described to create a simulation optimization model 

for a work process at a critical time junction to test hypotheses of improved performance. This 

method is used to create a model for a hypothetical “Air Interdiction Planning” mission and 

team. The model will be run under different settings including varying operational-tempo to 

evaluate the performance of the proposed method. The results will then be compared to the 

results obtained through applying the common practices that have been generally used in 

organizations that represents the bounds of the problem. Moreover, the performance of the 

developed GA based simulation-optimization method will be compared with a commercial 

simulation optimization engine OptQuest.  The next two sub-sections describe the 

implementation of the methodology on the selected case and explain the alternative methods 

(common practices and other simulation optimization approaches) that will be compared with the 

developed GA based simulation-optimization method.  

4.1. Implementation of Methodologies in a Prototype Application: “Air Interdiction 

Planning Mission”  

A fictitious case of an Air Force Air Interdiction Mission Planning work process is used to 

evaluate the performance of the methodology designed for this research. The objective of the air 

interdiction mission is to divert, disrupt, delay, or destroy the enemy’s military potential before it 

can be brought to bear effectively against friendly forces. Air interdiction is conducted at such 

distance from friendly forces that detailed integration of each air mission with the fire and 

movement of friendly forces is not necessary (Grooms, 2009). It requires fast planning and 

action to be effective. A team that receives real-time information about enemy positions and 

friendly positions, and requests for air support performs the planning of this mission. The team 
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has to analyze the requests in the context of the prevailing situation and plan missions as fast as 

possible without any errors. 

This system was chosen for the study because it meets the criteria of the problem definition, for 

instance, this example includes a team with given number of agents and flow of tasks. The 

process must be accomplished in a critical time, and as fast as possible without any errors. In 

order to achieve this aim, agents should stay under their workload threshold while parallel 

tasking. Furthermore, the capabilities of the agents and required capabilities by the tasks have 

critical effects on the task durations.  

In the next two sections, the prototype problem will be modeled following the defined steps in 

order to develop the GA based simulation optimization method. 

4.1.1 Optimization Engine for "Air Interdiction Planning Mission" Process  

The Air Interdiction Mission Planning has 10 main tasks that lead to several subtasks as shown 

in Table 9 (Perdu, 1997). There are 10 agents (decision makers) in the mission with different 

capabilities. The workload threshold value is set to 28 (see previous explanation). It means that 

the instantaneous workload of an agent cannot exceed 28. Note that this threshold is constant 

across all agents since the VACP workload scale is a task based scale and not related with 

agents’ characteristics.  

Let I = {1,2, … . ,10}  be a set of agents, and let J = {1,2, … . ,10}  be a set of tasks.  

The mathematical model is formulated as follows: 

Minimize 𝐹(𝑥𝑖𝑗 ) (9) 

Subject to:  ∑ 𝑥𝑖𝑗 = 1,𝑖𝜖𝐼    ∀𝑗𝜖𝐽 (10) 
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𝐺(𝑥𝑖𝑗 ) <  28     ∀𝑖𝜖𝐼 (Handled in simulation model) (11) 

𝑥𝑖𝑗 𝜖 {0,1} , ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽  (12) 

 

Objective function (9) represents timeliness, which minimizes the average duration of the work 

process. Equation (10) ensures that each job is assigned to exactly one agent. The function 

𝐺(𝑥𝑖𝑗 ) shows the instantaneous mental workload level of each agent. Equation (11) ensures that 

the instantaneous workload level of an agent stays below the upper bound 28 and this constraint 

is handled in the simulation model. Each assessment of 𝐹(𝑥𝑖𝑗 ) and 𝐺(𝑥𝑖𝑗 ) needs an execution of 

a simulation of the system. Equation (12) ensures that 𝑥𝑖𝑗  is a binary variable and handled in GA 

code. 

The GA is coded in JAVA following the explanations mentioned in section 3.1.1 on 

chromosome definition, initialization of population, fitness evaluation of chromosomes, 

crossover and mutation rules, and termination condition.  

4.1.2 Simulation Model for "Air Interdiction Planning Mission" Process  

4.1.2.1 Logic and Data of the Simulation Model 

The steps that have been indicated in Figure 6 have been followed to develop the simulation of 

the prototype problem. The simulation model is developed using ARENA simulation software.  

The steps and the data that have been used in each step are as follows:  

1. Develop Work Process Flow: 

The decomposition of the Air Interdiction Planning Mission has led to the 10 main tasks and 

each task further decomposed to several subtasks as listed in Table 11 (Perdu, 1997). The first 

task, “Analyze request” has a request coming from units on the battlefield, or an intelligence 
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report about some enemy movement behind the enemy lines. This task evaluates the threat of the 

enemy forces in the battlefield area designated by the request or the report. The second task, 

“Produce threat characteristic data” evaluates the threats and generates a threat characteristic data 

report. The third task, “Get enemy data” assesses and evaluates the enemy position in the 

battlefield, especially in the area designated by the request or the intelligence report and 

generates an enemy position in the battlefield report. The following task “Generate an enemy 

posture report” evaluates the enemy positions and generates the enemy posture report. The task 

“Target development and prioritization” prioritizes the targets. The following task produces an 

aimpoint report.  The task “Perform weaponing” defines the best weapon to destroy the target. 

“Evaluate air defense capability in the area of interest” defines battlefield environment and 

determines threat course of actions. It generates an air defense capability report. “Forecast the 

degree of redundancy” calculates the degree of redundancy necessary for the objective. The last 

task, “Plan mission” delivers the final output of the team. It combines the target data and the 

information contained in all the reports to define completely the mission.  

 

Table 11. Main and Subtasks of Air Interdiction Mission Planning 

1 Analyze request 

  Receive a request for CAS or intelligence report 

  Read the request  

  Evaluate the threat of the enemy forces in the battlefield area  

  Produce a threat report  

2 Produce threat characteristic data  

  Evaluate the threat report  

  Weight the threats likelihood 

  Generate threat characteristics data  

  Produce threat characteristic data report  
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Table 11. Continued 

 

3 Get enemy data  

  Receive enemy position data 

  Assess and evaluate the enemy position in the battlefield 

 
Generate the data sheet  

  Produce the enemy position in the battlefield report 

4 Generate an enemy posture report  

  Obtain enemy position in the battlefield report 

  Assess and evaluate the enemy positions 

  Generate the data sheet for report 

  Generate an enemy posture report  

5 Perform target development/prioritization 

  Obtain enemy posture report  

  Mark the targets 

  Prioritize the targets 

  Generate target development/prioritization report 

6 Perform aimpoint construction  

  Analyze target report 

  Construct the aimpoint 

  Generate the aimpoint data  

  Produce aimpoint report  

7 Perform weaponeering 

  Obtain target report  

  Obtain aimpoint report 

  Perform weapon selection 

  Produce weaponeering report  

8 Evaluate air defense capability in the area of interest 

  Define battlefield environment  

  Describe the battlefield's effect 

  Determine threat courses of actions  

  Produce air defense capability report  

9 Forecasts the degree of redundancy necessary for the objective  

  Obtain air defense capability report  

  Obtain aimpoint report 

  Calculate degree of redundancy necessary for the objective 

  Produce degree of redundancy report  

10 Produce mission plan  

  Obtain all the reports  

  Check the reports 
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Table 11. Continued 

 

Combine the reports  

  Produce mission plan  

 

 

The flow chart representation of the process is shown in Figure 9. Inputs from the environment 

are obtained, respectively, by tasks 1 and 3. The output of task 1 is processed by task 2. The 

output of task 3 is processed by task 4, and so forth. The flow chart on Figure 9 shows the 

predecessor-successor relationships, as well. Finally, task 10 needs the results of tasks 7 and 9 to 

produce the team output. Each task has 4 required capabilities in different levels. These 

capabilities are numerical analysis, problem solving and decision-making, communication, and 

computer skills (Kamrani et al., 2009). The capability level scale is from 1 to 5. 1 means low 

level and 5 means high level of capability required. The capability levels required by tasks are 

shown in Table 12.  
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Figure 9. Flow chart of the mission  
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Table 12. Required Capability Levels by Tasks 

Task / Required capability level Numerical 

Analysis 

Problem 

Solving and 

Decision 

Making 

Communication 

(Read and Write) 

Computer 

Skills 

(Software 

Experience) 

Analyze request 1 5 3 3 

Produce threat characteristic 

data 

3 4 3 2 

Get enemy data 1 1 3 5 

Generate an enemy posture 

report 

1 1 5 3 

Perform target 

development/prioritization 

3 3 3 3 

Perform aimpoint construction 4 3 2 4 

Perform weaponeering 3 3 2 2 

Evaluate air defense capability 

in the area of interest 

4 4 2 3 

Forecasts the degree of 

redundancy necessary for the 

objective 

5 3 1 3 

Produce mission plan 4 3 5 5 

 

 

2. Create Agents:  

There are 10 agents (DM1, …, DM10) in the mission with 4 capabilities in different levels. 

These capabilities are numerical analysis, problem solving and decision-making, communication, 

and computer skills (Kamrani et al., 2009). The capability levels of each agent are shown in 

Table 13. 
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Table 13. Capability Levels of Agents 

 

Numerical 

Analysis 

Problem Solving and 

Decision Making 

Communication (Read 

and Write) 

Computer Skills 

(Software Experience) 

Agent1 1 1 5 3 

Agent2 3 3 3 3 

Agent3 4 3 2 4 

Agent4 3 3 2 2 

Agent5 4 4 2 3 

Agent6 5 3 1 3 

Agent7 4 3 5 5 

Agent8 1 5 3 3 

Agent9 3 4 3 2 

Agent10 1 1 3 5 

 

 

3. Enter Task Durations and Task Time Moderators:  

The default duration of each task are shown in Table 14. The durations are characterized by a 

triangular distribution since only the minimum, maximum and most likely durations are known. 

Triangular distribution is selected because it is a rough approximation to a random variable with 

an unknown distribution. The difference between agent’s capability level and required capability 

level by task affects the durations. If agent lacks a capability, it increases the duration on the 

task. A weight is used for each level difference. It is called capability level difference coefficient. 

Currently this weight is set to 0.5, which means a one level difference between task and agent 

capacity increases the task duration by 50% regarding the probability distribution of the duration. 

The duration of work process is calculated as duration= finish time-start time. 
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Table 14. Tasks and Their Default Durations  

   Task  Duration 

1 Analyze request 
 

  Receive a request for CAS or intelligence report Triangular (4,5,6) 

  Read the request  Triangular (4,5,6) 

  Evaluate the threat of the enemy forces in the battlefield area  Triangular (8,10,12) 

  Produce a threat report  Triangular (4,5,6) 

2 Produce threat characteristic data  

   Evaluate the threat report  Triangular (4,5,6) 

  Weight the threats likelihood Triangular (8,10,12) 

  Generate threat characteristics data  Triangular (4,5,6) 

  Produce threat characteristic data report  Triangular (4,5,6) 

3 Get enemy data  
 

  Receive enemy position data Triangular (4,5,6) 

  Assess and evaluate the enemy position in the battlefield Triangular (8,10,12) 

  Generate the data sheet  Triangular (4,5,6) 

  Produce the enemy position in the battlefield report Triangular (4,5,6) 

4 Generate an enemy posture report  
 

  Obtain enemy position in the battlefield report Triangular (4,5,6) 

  Assess and evaluate the enemy positions Triangular (16,20,24) 

  Generate the data sheet for report Triangular (8,10,12) 

  Generate an enemy posture report  Triangular (4,5,6) 

5 Perform target development/prioritization 

   Obtain enemy posture report  Triangular (4,5,6) 

  Mark the targets Triangular (8,10,12) 

  Prioritize the targets Triangular (12,15,18) 

  Generate target development/prioritization report Triangular (4,5,6) 

6 Perform aimpoint construction  

   Analyze target report Triangular (8,10,12) 

  Construct the aimpoint Triangular (8,10,12) 

  Generate the aimpoint data  Triangular (4,5,6) 

  Produce aimpoint report  Triangular (4,5,6) 

7 Perform weaponeering 

   Obtain target report  Triangular (4,5,6) 

  Obtain aimpoint report Triangular (4,5,6) 

  Perform weapon selection Triangular (12,15,18) 
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Table 14. Continued 

 

  Produce weaponeering report  Triangular (4,5,6) 

8 Evaluate air defense capability in the area of interest 

   Define battlefield environment  Triangular (16,20,24) 

  Describe the battlefield's effect Triangular (16,20,24) 

  Determine threat courses of actions  Triangular (20,25,30) 

  Produce air defense capability report  Triangular (4,5,6) 

9 Forecasts the degree of redundancy necessary for the objective  

   Obtain air defense capability report  Triangular (4,5,6) 

  Obtain aimpoint report Triangular (4,5,6) 

  Calculate degree of redundancy necessary for the objective Triangular (28,35,42) 

  Produce degree of redundancy report  Triangular (4,5,6) 

10 Produce mission plan  

   Obtain all the reports  Triangular (8,10,12) 

  Check the reports Triangular (8,10,12) 

  Combine the reports  Triangular (16,20,24) 

  Produce mission plan  Triangular (4,5,6) 

 

 

4. Enter Workload Values and Workload Constraints: 

Table 15 shows the VACP values of each tasks belongs to these tasks. Those VACP values of 

each task are gathered from the study of Hunn, Schweitzer, Cahir, and Finch, (2008) that used 

the same VACP workload estimation scales in Table 10. Since the tasks used in their study are 

close enough to Air Interdiction Planning Mission tasks, no additional workload estimation 

procedure is used.  
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Table 15. Visual, Auditory, Cognitive and Psychomotor Workload Values of Each Task (their 

summation gives the total workload level)  

  Tasks Workload  

    

Visual  Auditory Cognitive Psychomotor 

1 Analyze request         

  
Receive a request for CAS or intelligence 

report 
3 0 1 2.2 

  Read the request  5.1 0 0 0 

  
Evaluate the threat of the enemy forces in 

the battlefield area  
3 0 4.6 0 

  Produce a threat report  4.4 0 1 6.5 

2 Produce threat characteristic data          

  Evaluate the threat report  3 0 4.6 0 

  Weight the threats likelihood 3 0 1.2 0 

  Generate threat characteristics data  3 0 1 2.2 

  Produce threat characteristic data report  0 0 0 2.2 

3 Get enemy data          

  Receive enemy position data 3 0 1 2.2 

  
Assess and evaluate the enemy position in 

the battlefield 
3 0 4.6 0 

  Generate the data sheet  3 0 1 2.2 

  
Produce the enemy position in the battlefield 

report 
0 0 0 2.2 

4 Generate an enemy posture report          

  
Obtain enemy position in the battlefield 

report 
3 0 1 2.2 

  Assess and evaluate the enemy positions 4 0 4.6 2.2 

  Generate the data sheet for report 3 0 1 2.2 

  Generate an enemy posture report  0 0 0 2.2 

5 
Perform target 

development/prioritization 
        

  Obtain enemy posture report  3 0 1 2.2 

  Mark the targets 4 0 1.2 2.2 

  Prioritize the targets 3 0 6.8 2.2 

  
Generate target development/prioritization 

report 
0 0 0 2.2 

6 Perform aimpoint construction          

  Analyze target report 4.4 0 4.6 0 
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Table 15. Continued 

 

  Construct the aimpoint 6 0 7 0 

  Generate the aimpoint data  3 0 0 2.2 

  Produce aimpoint report  0 0 0 2.2 

7 Perform weaponeering         

  Obtain target report  3 0 1 2.2 

  Obtain aimpoint report 3 0 1 2.2 

  Perform weapon selection 3 0 6.8 2.2 

  Produce weaponeering report  0 0 0 2.2 

8 
Evaluate air defense capability in the area 

of interest 
        

  Define battlefield environment  6 0 6.8 2.2 

  Describe the battlefield's effect 4.4 0 1 6.5 

  Determine threat courses of actions  0 0 6.8 6.5 

  Produce air defense capability report  4.4 0 1 6.5 

9 
Forecasts the degree of redundancy 

necessary for the objective  
        

  Obtain air defense capability report  3 0 1 2.2 

  Obtain aimpoint report 3 0 1 2.2 

  
Calculate degree of redundancy necessary 

for the objective 
3 0 7 2.2 

  Produce degree of redundancy report  0 0 0 2.2 

10 Produce mission plan          

  Obtain all the reports  3 0 1 2.2 

  Check the reports 3 0 6.8 2.2 

  Combine the reports  3 0 1 2.2 

  Produce mission plan  3 0 6.8 6.5 

 

 

The workload threshold value is set to 28. It means that the instantaneous workload of an agent 

cannot exceed 28.  

5. Define operational stress/tempo: 

Operational tempo for this Air Interdiction Planning Mission defines the frequency of inter-

arrival time of requests. Various levels of operational tempo will be used to test the model under 

varying conditions. As the inter-arrival time of work orders decreases, the operational tempo 
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increases. There is a discussion of the detailed information about operational tempo and its 

effects on the performance output in section 5.1. 

6. Assign Tasks to Agents: 

Agents are assigned to the tasks based on the optimization engine’s outputs. 

7. Run the Model and Obtain the Performance Results: 

The simulation run is started through the optimization engine once the task-agent pair 

suggestions are ready. The timeliness (average duration) of the process is calculated by this 

stochastic simulation model.  

4.1.2.2 Basic Analysis for the Simulation Model 

 

Validation and Verification: Before the simulation process developed as part of the simulation-

optimization methodology can be used, the validation and verification of this hypothetical model 

must be completed. Since, it cannot be compared to an actual system, after developing the 

simulation model; it is evaluated through face validation. The entire predecessor, successor 

relationships are checked and compared to similar work processes in literature (Perdu, 1997). 

The assigned task delays and workload components were based on similarly modeled military 

tasks (Mitchell, 2007). In this study, since the work processes serve as a surrogate to test the 

simulation-optimization modeling methodology and the hypothesis of improved performance, 

validating that the simulation model properly captures the work process characteristics is 

sufficient.  

The model verification is performed by using sensitivity analysis to study change in the input, 

which causes the change in the output correspondingly. Input values were modified to check for 

the simulation responses as a way to confirm the accuracy of the model implementation. The 
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verification method changes the number of work orders, increasing in one and decreasing in 

another. Results from the variation are then compared to the baseline simulation. 

In the original simulation, the number of work orders is 30. This amount is doubled and halved 

all the while keeping the inter-arrival time of work orders randomly distributed at 50 seconds. 

Table 15 illustrates the results. One can observe that by increasing the number of work orders, 

the waiting time of work orders, average duration of the work process increases. The reverse is 

true for decreasing the number of work orders. For instance, when the number of work orders 

doubled, average waiting time of work processes in queues increased by 38% and average 

duration of work process increased by 13%. In the reverse case average waiting time of work 

processes in queues decreased by 34% and average duration of work process decreased by 12%. 

One can see that these percentages in decreases and increases in waiting time and average 

duration are similar. The small variation between them can be explained by the stochasticity of 

the simulation model. For example, see the percentage of decrease and increase in average 

duration when the number of work orders doubled and halved. The increase is 13% and, the 

decrease is 12%. The variation is as small as 1%. 

 

Table 16. Sensitivity Analysis 

  
Original Number of 

Work Orders (30) 

Double Number of 

Work Orders (60) 

Half Number of Work 

Orders (15) 

Average waiting time of 

work orders in queues 

(sec) 

364.89 503.08 241.59 

Original Increase 38% Decrease 34% 

Average duration of the 

work process (sec) 

529.02 597.85 467.26 

Original Increase 13% Decrease 12% 
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Since the outcomes of the model are reasonable responses to the variations, the model meets the 

sensitivity analysis requirements.  

Termination condition of simulation: Note that Air Interdiction Planning Mission is a 

terminating system since the team is only working during their shift, and the problem is focuses 

on a specific period. Therefore, the simulation does not require a warm-up period. The 

simulation terminates once all the defined number of work orders (30) are completed. 

Setting the number of simulation replications: To implement a valid analysis of the simulation 

model, the number of simulation replications must be determined. The simulation model was 

executed for five runs using common random numbers under low operational tempo with 

random task-agent assignments to obtain 𝑛0. The number of work orders (30) defines the run 

length of each replication. The average duration of the work process obtained is 246.07. The 

standard deviation (s) is 10.15. According to these results, the half-width of the 95% confidence 

interval (ℎ0) is 𝑡𝑛−1,1−𝛼/2
𝑠

√𝑛0
= 11.64. In order to reduce half-width to 5 (h), an approximate 

required sample size would be 𝑛 = 𝑧1−𝛼/2
2 𝑠2

ℎ2= 15.8.  As a result, the simulation model is set at 15 

runs to evaluate the fitness value of each chromosome. At this point, the optimization engine and 

the simulation model (validated, verified, termination condition and number of replications 

defined) are ready to be integrated in order to complete the simulation optimization model.   

4.1.3 Integrating Simulation Model and Optimization Engine, Stopping Criteria of 

Simulation Optimization, and GA Parameter Setting for "Air Interdiction Planning 

Mission" Process  

Integrating Simulation Model and Optimization Engine: Once both modules are developed, the 

two-way communication is implemented by integrating the text files.  
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Stopping Criteria: For the stopping condition, a combination of convergence factor and number 

of iterations is used. To ensure convergence, GA runs for a predetermined number of generations 

while progress is monitored using graphs. Once the solutions remain static for 100 generations, it 

terminates. In case it does not converge, after 1000 iterations it terminates. As mentioned, 

although GA is a generally applicable meta-heuristic, the crossover rate, mutation rate and 

population size parameters need to be tuned to suit the problem on hand.  

Tuning the GA Parameters (Population Size, Cross-over Rate and Mutation Rate): In general, 

the population size is advised to be four times bigger than the chromosome size (Daniel & 

Rajendran, 2005). Since, the chromosome size is 10 the smallest population size is set to be 40 

following the population size set to 50 and 60, as well. Moreover, to identify the best set of 

population size (PS), cross-over rate (CR) and mutation rate (MR) across four different work 

process settings, two measures, namely relative increase in average duration and average relative 

increase in average duration are calculated for all sets of PS, CR and MR. The work process 

settings considered are called W1, W2, W3, and W4. W1 is the air interdiction planning mission 

work process with randomly distributed inter-arrival time of work orders of 100 seconds. W2 is 

the air interdiction planning mission work process with randomly distributed inter-arrival time of 

work orders of 75 seconds. W3 is the air interdiction planning mission work process with 

randomly distributed inter-arrival time of work orders of 50 seconds. W4 is the air interdiction 

planning mission work process with randomly distributed inter-arrival time of work orders of 25 

seconds. Note that as the inter-arrival time of work orders decreases, operational tempo 

increases. Decrease in inter-arrival time of work orders means that the frequency of work orders 

increases. The inter-arrival of work orders with 100, 75, 50, and 25 are selected to test the 

changes in average duration with respect to varying PS, MR, and CR. 
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The formula used for relative increase in average duration for given PS, CR and MR: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛{𝑃𝑆;𝐶𝑅;𝑀𝑅} − min 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛{𝑃𝑆;𝐶𝑅;𝑀𝑅} 

min 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛{𝑃𝑆;𝐶𝑅;𝑀𝑅}
𝑥 100 

 

 

To explain the measure, consider the work process W1 with inter-arrival time of work orders of 

100 seconds (randomly distributed) and the PS, CR and MR setting {40; 0.5, 0.01}. The average 

duration of the work process corresponding to this set of PS, CR, and MR is 307.98 seconds (see 

Table 16). The minimum average duration obtained through different set of PS, CR and MR for 

W1 is 244.87 (see Table 15). Hence the relative increase in average duration for the setting of 

{40; 0.5, 0.01} with respect to work process W1 is computed as 63.11 (i.e. (307.98-244.87) 

*100/244.87) (see Table 17). Similarly, the relative increase in average duration is computed 

with respect to all work processes settings (W1, W2, W3, and W4) and PS, CR, and MR settings. 

The average relative increase in average duration for a given setting of CR and MR across 

different operational tempo setting is calculated as follows:  

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 

4
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Table 17. Results (Average Duration) from the Simulation Optimization Based on the Given PS, 

CR and MR  

 
{PS; CR; MR} 

Work Process settings with varying inter-arrival time of work orders  

W1  

(inter arrival 

time of work 

orders100 sec. 

randomly 

distributed) 

W2 

(inter arrival time 

of work orders 75 

sec. randomly 

distributed) 

W3 

(inter arrival time 

of work orders 50 

sec. randomly 

distributed) 

W4 

(inter arrival time 

of work orders 25 

sec. randomly 

distributed) 

40 0.5 0.01 307.98 274.53 366.70 762.11 

40 0.5 0.02 334.84 287.30 350.05 663.72 

40 0.5 0.03 285.39 309.43 763.67 635.22 

40 0.6 0.01 296.90 286.37 857.04 658.65 

40 0.6 0.02 255.64 282.21 354.75 624.12 

40 0.6 0.03 251.30 269.64 325.18 1512.94 

40 0.7 0.01 396.57 372.91 309.31 680.03 

40 0.7 0.02 266.11 315.70 381.55 620.53 

40 0.7 0.03 352.06 548.84 363.75 784.17 

40 0.8 0.01 260.46 252.77 352.94 621.16 

40 0.8 0.02 244.87 285.99 328.00 725.69 

40 0.8 0.03 274.50 267.39 1003.91 686.80 

40 0.9 0.01 255.90 283.77 837.40 671.21 

40 0.9 0.02 252.03 290.59 312.61 709.33 

40 0.9 0.03 271.20 257.99 566.89 1436.98 

50 0.5 0.01  534.98 264.46 377.29 773.27 

50 0.5 0.02  335.23 291.14 451.00 710.04 

50 0.5 0.03 281.48 271.55 379.38 677.93 

50 0.6 0.01  333.80 271.55 332.33 1072.81 

50 0.6 0.02  282.54 318.26 361.49 703.14 

50 0.6 0.03 282.60 339.20 633.94 760.97 

50 0.7 0.01  278.49 328.77 867.31 615.82 

50 0.7 0.02  266.69 408.67 390.13 638.33 

50 0.7 0.03 264.63 287.15 392.41 850.75 

50 0.8 0.01  255.47 269.25 780.76 791.99 

50 0.8 0.02  291.74 318.78 324.23 923.76 

50 0.8 0.03 258.11 337.79 355.84 616.68 

50 0.9 0.01  254.77 450.14 360.65 744.79 

50 0.9 0.02  304.38 546.85 608.55 690.40 
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Table 17. Continued 

50 0.9 0.03 281.08 304.53 336.29 878.45 

60 0.5 0.01  247.22 372.43 339.92 665.37 

60 0.5 0.02  272.07 329.83 453.00 782.25 

60 0.5 0.03 312.93 414.62 407.79 740.68 

60 0.6 0.01  368.08 290.31 372.90 679.02 

60 0.6 0.02  274.31 280.81 363.66 808.79 

60 0.6 0.03 354.55 310.65 343.51 868.37 

60 0.7 0.01  283.77 353.02 393.88 647.01 

60 0.7 0.02  245.34 282.61 357.98 902.61 

60 0.7 0.03 380.72 319.45 394.89 1073.35 

60 0.8 0.01  277.52 340.75 629.14 744.03 

60 0.8 0.02  287.34 397.54 841.99 906.29 

60 0.8 0.03 298.56 290.92 389.68 991.73 

60 0.9 0.01  293.07 335.11 350.02 663.86 

60 0.9 0.02  270.88 448.53 413.00 640.09 

60 0.9 0.03 297.30 321.28 341.30 771.49 

Minimum 244.87 252.77 309.31 615.82 

 

 

For example, considering the work process settings W1, W2, W3, and W4, the respective 

relative increases in average duration with the given PS, CR, and MR being {40; 0.5, 0.01} are 

63.11, 21.76, 57.39, and 146.28, and the average relative increase in in average duration is 72.14 

(see Table 18). 
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Table 18. Relative increase in average duration and average relative increase in average duration 

 

{PS; CR; 

MR} 

Work Process settings with varying inter-arrival time of 

work orders  

 

Average 

relative 

increase in 

average 

duration 

W1  

(inter arrival 

time of 

work 

orders100 

sec. 

randomly 

distributed) 

W2 

(inter arrival 

time of 

work orders 

75 sec. 

randomly 

distributed) 

W3 

(inter arrival 

time of 

work orders 

50 sec. 

randomly 

distributed) 

W4 

(inter arrival 

time of work 

orders 25 

sec. 

randomly 

distributed) 

40 0.5 0.01 63.11 21.76 57.39 146.28 72.14 

40 0.5 0.02 89.97 34.53 40.74 47.90 53.29 

40 0.5 0.03 40.52 56.66 454.36 19.40 142.73 

40 0.6 0.01 52.03 33.60 547.73 42.82 169.05 

40 0.6 0.02 10.78 29.44 45.44 8.30 23.49 

40 0.6 0.03 6.43 16.87 15.88 897.11 234.07 

40 0.7 0.01 151.70 120.14 0.00 64.21 84.01 

40 0.7 0.02 21.25 62.93 72.24 4.70 40.28 

40 0.7 0.03 107.19 296.07 54.45 168.34 156.51 

40 0.8 0.01 15.59 0.00 43.63 5.34 16.14 

40 0.8 0.02 0.00 33.22 18.70 109.87 40.45 

40 0.8 0.03 29.63 14.62 694.60 70.98 202.46 

40 0.9 0.01 11.03 31.00 528.09 55.38 156.38 

40 0.9 0.02 7.16 37.82 3.30 93.50 35.44 

40 0.9 0.03 26.33 5.22 257.58 821.15 277.57 

50 0.5 0.01  290.11 11.69 67.98 157.45 131.81 

50 0.5 0.02  90.36 38.37 141.69 94.21 91.16 

50 0.5 0.03 36.62 18.78 70.07 62.11 46.89 

50 0.6 0.01  88.94 18.78 23.02 456.99 146.93 

50 0.6 0.02  37.67 65.49 52.18 87.31 60.66 

50 0.6 0.03 37.74 86.44 324.63 145.15 148.49 

50 0.7 0.01  33.63 76.00 558.00 0.00 166.91 

50 0.7 0.02  21.82 155.91 80.82 22.50 70.26 

50 0.7 0.03 19.76 34.38 83.10 234.93 93.04 

50 0.8 0.01  10.60 16.48 471.45 176.16 168.68 

50 0.8 0.02  46.87 66.01 14.92 307.93 108.93 

50 0.8 0.03 13.24 85.02 46.54 0.85 36.41 

50 0.9 0.01  9.90 197.37 51.34 128.97 96.90 

50 0.9 0.02  59.52 294.08 299.24 74.57 181.85 

50 0.9 0.03 36.21 51.76 26.98 262.63 94.39 
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Table 18. Continued 

60 0.5 0.01  2.35 119.66 30.62 49.54 50.54 

60 0.5 0.02  27.20 77.06 143.69 166.43 103.60 

60 0.5 0.03 68.06 161.85 98.48 124.86 113.31 

60 0.6 0.01  123.21 37.54 63.59 63.20 71.89 

60 0.6 0.02  29.45 28.04 54.35 192.96 76.20 

60 0.6 0.03 109.68 57.88 34.20 252.55 113.58 

60 0.7 0.01  38.91 100.25 84.57 31.19 63.73 

60 0.7 0.02  0.47 29.84 48.67 286.78 91.44 

60 0.7 0.03 135.85 66.68 85.58 457.52 186.41 

60 0.8 0.01  32.66 87.98 319.83 128.21 142.17 

60 0.8 0.02  42.48 144.77 532.68 290.47 252.60 

60 0.8 0.03 53.69 38.15 80.37 375.90 137.03 

60 0.9 0.01  48.20 82.34 40.71 48.04 54.82 

60 0.9 0.02  26.02 195.76 103.69 24.27 87.43 

60 0.9 0.03 52.43 68.51 31.99 155.67 77.15 

Minimum         16.14 

 

 

Once the average relative increase in average duration is computed for all combinations of PS, 

CR and MR across different work process settings (W1, W2, W3, and W4), the set of PS, CR, 

and MR that results in minimum average relative increase in average duration is then selected. 

According to the results shown in Table 18 the lowest average relative increase is obtained from 

PS, CR, and MR setting of {40; 0.8; 0.01}. Consequently, PS, CR and MR are set to {40; 0.8; 

0.01} for the current study. 

At this point, the simulation optimization model is ready for the experiments. The next section 

will describe the alternative methods that will be used to compare the results of the simulation-

optimization model; the results of the models will be discussed in the next chapter.  

4.2. Alternative Methods to Compare with Developed GA Based Simulation-Optimization 

Method  
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In order to show the benefit of the GA based simulation-optimization method, the results will be 

compared to alternative methods. These common approaches are being used in organizations and 

other simulation-optimization techniques. The common approaches are called “Assignment 

based on capabilities” and “Assignment based on availability”. Those approaches represent the 

two extreme cases and the extreme bounds of the problem. The first is only taking into 

consideration the capability of employees while assigning them to tasks, while the second is only 

taking into consideration the availability of employees while assigning them to tasks. Moreover, 

a commercial simulation optimization package OptQuest is selected as an alternative tool to 

solve the current problem. The information and explanation on these methods are given in the 

next sub section.  

4.2.1 Alternative Methods  

4.2.1.1. Assignment methods used in common practices 

 

Two different extreme methods have been used in organizations for assigning tasks to 

employees. One of these methods represents the extreme case where only capability is used as 

the assignment criteria. In order to refer this method easily, it is referred to as assignment based 

on capabilities. The other one represents the other extreme case where only availability of the 

employee is used as the assignment criteria. This method is referred to as assignment based on 

availability. 

Note that there is no enough evidence in the literature for other methods or heuristics that 

represent these extreme cases, which are applicable to the current problem. For instance, the 

method that Eiselt and Marianov (2008) developed, takes the different skill levels and two 

different objectives into consideration in order to find the task-agent assignments. However, it is 

not possible to solve the problem in reasonable time with high number of agent and tasks. 
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Moreover, their method cannot be applied without being configured for the current problem. In 

addition, the mental workload availability analysis in the literature are limited with what-if 

simulation analysis.    

Assignment based on capabilities (ABOC): In general, in a work process, the most skilled 

person is assigned to high number of tasks while the rest of the team is assigned to lower number 

of tasks (Daskal, 2016; Jackson, 2014; Parker, 2011). This has been a common assignment 

approach in various organizations and reported as a reason for low performance and unsatisfied 

employees (Schwartz & Erikson, 2009). In a low tempo environment, this assignment method is 

not likely to affect the overall task process performance; however, in higher tempo 

environments, the negative effects start to appear (such as increasing the duration).  

The simulation is configured in order to represent this condition. First, the person with the 

highest capability levels is found. Then this person is assigned as many tasks that are equal or 

under his capability range. The rest of the tasks are assigned to the rest of employees according 

to their capability range; some of the employees may remain idle. The steps of the heuristic are 

as follows:  

1. Find the agent with the highest total capability level.  

2. Assign agent as many tasks as possible as long as each tasks’ capability level is equal or 

lower than his capability levels.  

3. Assign the rest of the Agents in a way that each skill level of the agent is equal or higher 

than the skill level of the task.  

4. If there is no such case, assign agent to the task that is closer to his skill levels. 
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This assignment method represents the extreme case where only capability of agent is used as the 

assignment criteria.  

Assignment based on the availability (ABOA): In this method, employees are assigned to the 

tasks based on their availabilities without taking their capabilities in to consideration. In other 

words, whoever has enough residual mental workload capacity for the next task is assigned to 

that task. The simulation model is arranged to represent this rule by adding the necessary 

decision module that shown in the flowchart in Figure 10 (adapted from the availability and 

assignment algorithm of Cook et al., 2012, pg. 87). Before each task, the current residual 

capacity of each agent is calculated. The first agent that has enough residual capacity for the 

following task assigned to the task. An agent is assigned randomly if there is no agent with 

enough current residual capacity.  

This assignment method represents the other extreme case where only mental workload 

availability of agents is used as the assignment criteria. 
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Figure 10. Flow chart for assignment based on availability rule 

 

4.2.1.2. Other Simulation Optimization Methods  

 

Simulation Optimization Package (OptQuest): In this study, a commercial optimization 

package, OptQuest, developed by OpTek, Inc. is selected to compare to the optimization model. 

The reason of selecting OptQuest is its compatibility with ARENA simulation software. 
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Developing identical simulation model with different software is a challenging task (Eskandari, 

Mahmoodi, Fallah, & Geiger, 2011). By using an optimization package that is compatible with 

ARENA, the same developed simulation model can be used to compare OptQuest with the 

developed optimization engine.   

OptQuest employs three different search heuristics (Eskandari et al., 2011; Lipski, 2013; Wan & 

Kleijnen, 2006). Its main search strategy is scatter search (SS). SS applies heuristic processes to 

generate a starting set of solution vectors and designate a subset of best vectors to be reference 

solutions. Then the algorithm forms the linear combination of subsets of current reference points 

and generates new points. In the next step, the SS algorithm selects a combination of the best 

solutions and uses them as starting points for a new application of the heuristic processes and 

repeats these steps until a specified number of iteration or reaches stopping criteria. The 

secondary method that OptQuest uses is tabu search (TS). TS uses adaptive memory to prohibit 

the search from reinvestigating solutions that have already been evaluated and to guide the 

search to a globally optimal solution. As the last method, OptQuest employs neural networks 

(NN). A neural network is used to screen out solutions that are likely to be poor without allowing 

the simulation to evaluate them. The neural network is used as a prediction model to help the 

system accelerate the search by avoiding the need for evaluating objective function for a newly 

created reference point, in situations where the objective value can be predicted to be of low 

quality. 

OptQuest uses three stopping rules: user-specified maximum number of configurations, 

automatic stop (run until there is no improvement in the value of the objective function for 100 

consecutive configurations), and combination of both rules. 
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As described in literature review section, commercial simulation optimization tools are not 

developed to solve all types of problems and requires user sophistication. Note that OptQuest is 

not developed for solving assignment problems and configuring it to solve an assignment 

problem was a challenge.  

In order to configure OptQuest for assignment problem, ARENA’s capability of defining 

resource (agent) capacity as a variable is used. Instead of defining 10 agents, 100 (10x10) agents 

were created. For every one agent, 10 agents were created to represent which tasks the agent is 

assigned. The related variables (mental workload and capability) are changed accordingly in 

order to keep the same simulation logic.  

In order to compare OptQuest solutions to the developed GA based simulation-optimization 

method, the same stopping rules are applied in both solution methods. In both methods the 

convergence factor is set to 100 which mean the methods run until there is no improvement in 

the value of the objective function for 100 consecutive configurations. The maximum number of 

configurations is set to 1000. 

Complete Enumeration: Complete enumeration technique is another approach that can be used 

in order to find the optimum solution/solutions for the problem. In complete enumeration, all the 

possible solution combinations are enumerated and solved (Rao, 2009). Finally, the solution 

combination, which has the best objective function value, is selected.  

Note that this method is not efficient or cannot be applied to large size combinatorial problems 

because the number of possible solution combinations will grow exponentially with respect to 

problem size. This method can only be applied to polynomial or small size combinatorial 

problems.  
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In the current case (Air Interdiction Planning Mission), because of the number of tasks and 

number of agents, the number of all combinations to be tested is 10,000,000,000 (1010). 

Moreover, when taking into consideration the stochasticity of the problem, the number can be 

even higher. As a result, it is not possible to apply this method for the current case. However, it 

is mentioned in this section in order to illustrate the necessity of a reliable and fast search 

algorithm to solve the mentioned problem.  

In summary, the simulation-optimization model is now ready for the experiments. Moreover, two 

common practices, assignment based on capability and assignment based on availability are 

introduced in order to make comparisons to developed method’s performance. Additionally, in 

order to show the effectiveness of the developed model, another simulation optimization tool (a 

commercial one) is presented. In the next chapter, the results from the developed simulation 

optimization model with comparison to the alternative assignment methods will be introduced 

and discussed in detail.   
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5. NUMERICAL RESULTS AND COMPUTATIONAL PERFORMANCE  

The developed GA based simulation-optimization model was executed through numerous 

configurations with respect to varying operational tempo and range of parameters. For simplicity, 

through the rest of the document the developed GA based simulation optimization model will be 

referred to as ABOGA, which is the abbreviation of assignment based on genetic algorithm.  

The performance of the ABOGA approach is shown by comparing the computational results to 

the results obtained from applying the previously described common practices and solving the 

same problem with the commercial simulation optimization tool OptQuest. 

Additionally, the effects of parameters namely Capability Level Difference Coefficient and 

Number of Work Orders on the average work process duration (performance output) is tested 

under varying operational tempo in order to further evaluate the performance of the assignment 

methods.  

5.1. The preliminary results from common practice applications  

 

In order to understand the system behavior of Air Interdiction Planning Mission example; firstly, 

the simulation models that reflect the common practices are run through various operational 

tempo (inter-arrival time of work orders) at a range of randomly distributed 10-350 seconds with 

10 seconds increments. In doing so, the low, medium, and high operational tempo ranges are 

defined. The ranges in which the extreme common practices perform better than the other are 

understood. Defining the ranges by applying these common practices was necessary in order to 

identify the appropriate conditions in which to conduct further reasonable experiments. Once the 

necessary ranges are defined, developed ABOGA method is used to solve the problem in these 

ranges.  
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By following the steps explained in the definition of ABOC rule, the following agent-task 

assignments is used as an input for the simulation (recall for this case, the agent who meets or 

exceeds the required capability of the tasks is assigned): 

Task 1 2 3 4 5 6 7 8 9 10 

Agent 8 9 7 7 7 7 7 5 6 7 

 

For the ABOA rule that has been described in Figure 10, it is applied before each task module 

initiates in the simulation model. Recall in this case, the agent that is available for the task based 

on residual mental capacity is assigned.  

Figure 11 shows the change in average duration of the work process as the operational tempo 

increases for both of the assignment techniques. Between 350-150 seconds inter-arrival time of 

work orders range; there is not a substantial change in the average duration of the work processes 

under both ABOC and ABOA rules. During this range, the agents are not “stressed,” there is 

plenty of time between the arrival of work orders to complete the tasks and the likelihood of the 

need for multi-tasking is very low.  However, after inter-arrival time of work orders of 150 

seconds, the variations in average duration start to appear. Specifically, there is a slight increase 

in average duration between the 150-100 range. Between 50-10 range, there is a dramatic change 

in average duration especially under the ABOC method. Accordingly, the inter-arrival time of 

work orders 150-100 range is defined as low operational tempo, 90-50 range is defined as 

medium operational tempo, and 40-10 range is defined as high operational tempo (Figure 12). 

Further experiments will be conducted using these low, medium, and high operational tempo 

ranges.  
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Figure 11. Average Duration Results (output) from Common Practices Under Varying 

Operational Tempo 

 

Inter-arrival 
Time of 
Work 
Orders 
(sec.) 

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 

Operational 
Tempo  

Low Medium High  

Figure 12. The Relationship Between Operational Tempo and Inter-arrival Time of Work Orders 
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while ABOA rule performs better as the operational tempo increases (50-10). Moreover, ABOC 

is less sensitive to operational tempo than ABOA.  

In ABOC rule, even though all agents are capable enough to accomplish the tasks as fast as 

possible, since the most capable agent, which is agent 7, works on several tasks. As the 

operational tempo increases, more and more tasks start to waiting in the queue for the agent to 

become available. This situation ends up increasing the overall duration of the work process. 

Generally, the ABOA rule is more consistent during the changes in operational tempo. Given no 

consideration for the agents’ capabilities, it results in a higher average duration than ABOC rule 

during low and medium operational tempo.    

As the results indicate, both assignment methods are noteworthy for the timeliness of the work 

process and should be taken in to consideration. As a result of this initial definition of the 

problem space, the developed method, ABOGA, will next be employed for the problem in the 

defined area of concern ranges (inter-arrival time of work orders of 150-10 seconds) in order to 

test the hypotheses of taking both capability and workload level of the agents into consideration 

for the assignment.  

5.2. Results from developed GA based simulation-optimization method (ABOGA) 

 

Now that the application of common practices has identified the area of concern, the proposed 

ABOGA method is applied to the problem for the 10-150 inter-arrival time of work orders range 

with 10 seconds of increments. The tuned population size, cross over rate and mutation rate (PS, 

CR, MR): (40, 0.8, 0.01) are used, as determined in the initial characterization of the model 

described in section 4.1.3. 
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Note that as the operational tempo changes, the solution space of the problem changes as well. 

When the operational tempo is lower (which means the inter-arrival time of work orders is 

higher), several number of solutions in the solution space are optimal or near optimal. As the 

operational tempo increases, the number of optimal or near optimal solutions gets lower and 

lower. As a result, solving the problem with different operational tempo can be considered as 

solving a new independent problem because the GA is searching for the solutions on a different 

solution space. 

The GA starts immediately after the generation of the initial population, which is then send into 

the ARENA simulation model through a text file to begin the simulation executions. The average 

duration of Air Interdiction Planning Mission process obtained from the simulation executions 

becomes the fitness for each chromosome. After the crossover and mutation, offspring are 

obtained to replace some of the chromosomes in the mating pool. After the fitness values of 

chromosomes are evaluated, the results are analyzed to decide whether to stop or continue 

through the GA generations (Figure 6).  

The results of the ABOGA can be found in Table 18 with task-agent assignments and number of 

generations GA used to find the solution. In case that the assignments showed in Table 18 are 

used for Air Interdiction Planning tasks and team, the work process would take the 

corresponding average durations without overloading any agent. For instance, in experiment 1, 

under low operational tempo with the inter-arrival time of work orders of 150 seconds, the agent 

task pairs should be  

Task 1 2 3 4 5 6 7 8 9 10 

Agent 8 7 10 1 7 3 9 5 6 7 
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and the average duration would be 359 seconds for the team to get the air interdiction plan ready 

without making any errors, since no agent is overloaded.  

The solutions show that the assignments are changing and the average durations are increasing 

gradually as the operational tempo increases. The substantial differences in average durations are 

seen during medium and, especially high operational tempo (Table 17, experiment numbers 9 to 

15). The changes in the agent-task assignments is the results of ABOGA’s search mechanism. As 

the operational tempo increases or decreases, different agent-task assignments lead to lower 

average work process durations. As a reminder, there are 10,000,000,000 possible agent-task 

assignments for this work process and it is not possible to evaluate all of them in order to decide 

which pair would lead to lowest duration. As a result, employing the ABOGA was necessary in 

order to find the agent-task pairs that leads to lower average durations under varying operational 

tempo while making sure that the agents are not overloaded. The solution evolution processes of 

GA with average duration and the best chromosomes under varying operational tempo are shown 

in Figure 13. It is important to point out that all the ABOGA experiments are converged (after 

100 generations with no change on the best solution found so far) before completing the 

maximum number of generations allowed (1000). It took GA at least 59 and at most 552 

generations to converge (Table 18, experiment numbers 2 and 3, respectively).  
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Table 19. Results from the Developed Simulation Optimization Approach Under Changing 

Operational Tempo  

Experiment 
No 

Operational 
Tempo 

Inter-arrival 
time of work 
orders (in 
seconds and 
randomly 
distributed) 

Average 
Duration 
(sec.)/ 
Timeliness  

Agent Assignments to 
(Task 1, Task 2, …., Task 
10) 

# of GA 
generations to 
find the 
solution 

1 Low 150 238.73685 8,7,10,1,7,3,9,5,6,7 359 

2 140 262.94016 8,9,10,1,2,6,9,5,3,7 59 

3 130 241.6398 8,4,7,7,2,3,3,5,6,7 552 

4 120 242.21153 8,2,10,1,2,3,7,5,6,7 409 

5 110 259.0673 8,2,10,7,3,7,5,5,6,7 464 

6 100 251.13481 8,4,10,1,7,7,2,5,6,7 234 

7 Medium 90 247.05888 8,2,10,1,2,3,4,5,6,7 301 

8 80 251.41364 8,9,10,1,2,3,9,5,6,7 462 

9 70 263.60068 8,9,10,1,2,7,9,5,6,7 438 

10 60 301.40204 2,9,10,8,9,3,4,5,6,7 316 

11 50 306.76413 8,9,10,7,2,3,2,5,6,7 353 

12 High 40 440.90564 8,2,10,7,6,9,1,5,3,7 201 

13 30 473.32428 4,9,10,1,9,3,8,5,6,7 467 

14 20 649.88586 9,3,10,10,8,2,9,5,6,7 118 

15 10 808.13715 8,10,10,7,2,4,9,5,6,7 258 

 

 

As one can see some task-agent pairs are most consistent than others. These are Task 1- Agent 8, 

Task 3- Agent 10, Task 9- Agent 6 and Task 10- Agent 7. Task 1, Task 9 and Task 10 are some 

of the tasks that required high capability levels (Table 11). Agent 8, Agent 6 and Agent 7 are 

some of the agents that have high capability levels (Table 12). Accordingly, the GA finds the 

solutions that include these assignments in order to decrease the average duration. On the other 

hand, Task 3 is one of the tasks that require low capability levels and Agent 10 is one of the 

agents that have low capability levels. As a result, GA finds the solutions that include this 
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assignment to avoid Agent 10 to work on a task require higher capability levels. The rest of the 

agent-task assignments are changing as the operational tempo changes in order to find the pairs 

that lead to lowest average duration of the work process.  
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Figure 13. Evolution process and convergence of solutions in the optimization engine (GA) 

 

The longest ABOGA run took approximately 36 hours (Table 18, experiment No 3). Evidence 

notes that there are several components that affect the computation time. These are the 

computing environment, initial solution, and simulation run time. Even though the common 

random number technique is used in order to decrease variability in the output of the simulation 
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replications, 15 replications were decided to appropriate to obtain meaningful results. The 

significant amount of time in this process is spent in running the simulation experiments.  

In order to employ the simulation-optimization on a work process the user should have 

estimation on the operational tempo of the work process. A work process does not have to have 

one single operational tempo level. The operational tempo can change according to the time of 

the day or the occurrence of an event (such as the busiest hours in emergency rooms). In that 

case, the simulation optimization can be run using the expected operational tempo levels in order 

to find assignments to minimize the average duration of the work process.  

It is shown that the ABOGA method searches the solution space for the right agent-task 

assignment in order to minimize the work process duration. Further observations on the 

effectiveness of ABOGA method will be discussed in the rest of the chapter by making 

comparison with the results obtained from the common practices and OptQuest tool.  

5.3. Comparison of the results from ABOGA to common practices  

 

In order to show the effectiveness of the developed ABOGA method, the results that were 

obtained from ABOGA method are compared to the results that are obtained from common 

practices.  

The results shown in section 5.1 indicated that ABOC leads to lower average duration during low 

and medium operational tempo and ABOA leads to lower average duration during high 

operational tempo. However, both variables, capability and mental workload of the agents are 

important for the duration of the work process. Even though these common practices have 

operational tempo ranges that they work better under; when compared to the ABOGA results, 
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there are agent-task pairs that lead to better solutions than the common practices under any 

operational tempo.  

Figure 14 shows the results of average duration of Air Interdiction Planning Mission under 

varying operational tempo from both common practices (ABOC and ABOA) and ABOGA 

method. In low operational tempo, the solutions found by ABOGA is better but very close to 

solutions found by ABOC.  However, after the point of 100 seconds (randomly distributed) inter-

arrival time of work orders, the average duration resulted from ABOC starts to increase 

gradually. The reason is that the ABOC assigns numerous tasks to the most capable agent, as the 

inter-arrival time increases, the number of tasks waiting for that particular agent to be available 

increases. ABOGA method solves this issue and finds the right assignments without over loading 

one particular agent. Conversely, even though, ABOA takes the workload of the agent in to 

consideration, it does not consider the capability levels and consequently assigns agents to tasks 

with unmatched capabilities. As a result, it results in higher average duration than the ABOGA. 

From the graph in Figure 14, one can see the considerable difference in the average duration 

results from common practices and the ABOGA method. Especially, during medium and high 

operational tempo, this difference gap is increases dramatically. ABOGA method finds the task-

agent assignments that lead to lower average duration of work process than ABOC and ABOA 

methods.   
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Figure 14. Comparison between common approaches (ABOA and ABOC) and ABOGA 

 

Table 20 shows the percent difference of average duration found between common practices and 

ABOGA method. Percent difference between ABOC and ABOGA method is very low during 

low operational tempo (as low as 1.43% in experiment 2), while the differences between ABOA 

and ABOGA goes as high as 184.83% (experiment 4). In contrast, during high operational 

tempo, differences between ABOC and ABOGA is as high as 191.29% (experiment 13), and 

differences between ABOA and ABOGA is as high as 105.52% (experiment 12) and as low as 

41.48% (experiment 15). Moreover, under any operational tempo neither ABOC nor ABOA 

method could find an assignment that leads lower average duration than ABOGA method. 

ABOGA method found the assignments that lead to lowest average duration for Air Interdiction 

Planning Mission under every operational tempo setting.   
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Table 20. Percent Difference Between ABOC, ABOA and Developed ABOGA Average 

Duration Results 

Experime

nt No 

Operation

al Tempo 

Inter 

arrival 

time of 

work 

orders 

(sec., 

randomly 

distributed

) 

Average 

duration 

from 

ABOC 

assignment

s 

Average 

duration 

from 

ABOA 

assignment

s 

Average 

duration 

from 

ABOGA 

assignment

s 

%differenc

e between 

ABOC and 

ABOGA 

%differenc

e between 

ABOA and 

ABOGA 

1 Low 150 259.42 678.06 238.74 8.66 184.02 

2 140 266.71 678.03 262.94 1.43 157.86 

3 130 278.36 681.7 241.64 15.20 182.11 

4 120 289.42 689.89 242.21 19.49 184.83 

5 110 306.28 692.1 259.07 18.22 167.15 

6 100 327.18 701.35 251.13 30.28 179.27 

7 Medium 90 361.24 708.84 247.06 46.22 186.91 

8 80 410.27 729.92 251.41 63.19 190.33 

9 70 512.49 765.8 263.60 94.42 190.52 

10 60 675.37 791.78 301.40 124.08 162.70 

11 50 886.82 861.51 306.76 189.09 180.84 

12 High 40 1120.7 906.14 440.91 154.18 105.52 

13 30 1378.74 972 473.32 191.29 105.36 

14 20 1588.37 1031.54 649.89 144.41 58.73 

15 10 1801.39 1143.38 808.14 122.91 41.48 

 

 

These results confirm that assignment based on capability level and assignment based on 

workload levels both have importance on the performance of the work process. When both issues 

are taken into consideration together, by finding the right task-agent assignments, the 

performance of the work process increases. By using the developed ABOGA method, one can 

find the task-agent pairs that result in lower average duration of Air Interdiction Planning 

Mission process than ABOC and ABOA method.  
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5.4. Comparison of results from developed ABOGA to OptQuest 

 

OptQuest uses a combination of scatter search, tabu search and neural networks algorithms in 

order to find a good, satisfactory or best solution. The developed ABOGA uses a special genetic 

algorithm that tuned for this problem. Since the search algorithms are different in these two 

methods, in order to compare them, the same rules are applied as closely as feasible. The 

following points summarize the similar rules used in both approaches:  

 The same simulation model developed in ARENA simulation software is used.  

 Same number of simulation replications (15) are used in order to evaluate a candidate 

solution. 

 The same stopping criteria are used. Convergence rate is set to 100 in both algorithms.  

The maximum number of generation is set to 1000. 

The results to the problem obtained from OptQuest can be found in Table 21 with agent-task 

assignments and number of solutions generated in order to find the lowest average work process 

durations. Note that all the OptQuest experiments are also converged without completing the 

maximum allowed generations. The highest generations that OptQuest has taken in order to 

converge was 600 (experiment 15). The consistency of some agent-task pairs such as Task 1- 

Agent 8 and Task 10- Agent 7 can be seen in OptQuest results as well.  
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Table 21. Results from OptQuest Under Varying Operational Tempo 

Experiment 

No 

Operational 

Tempo 

Inter-arrival 

time of work 

orders (in 

seconds and 

randomly 

distributed) 

Average 

Duration 

(sec.)/ 

Timeliness  

Agent Assignments 

to (Task 1, Task 2, 

…., Task 10) 

# of 

OptQuest 

generations to 

find the 

solution 

1 Low 150 238.72 8,9,7,1,7,3,3,5,6,7 346 

2 140 287.92 9,9,7,1,2,2,3,5,7,7 391 

3 130 292.28 8,5,7,1,2,9,5,3,6,7 464 

4 120 243.03 8,2,7,1,2,7,2,5,6,7 503 

5 110 328.33 6,9,3,1,4,3,2,5,3,7 366 

6 100 315.18 8,9,7,1,8,2,9,3,6,7 446 

7 Medium 90 278.77 8,9,10,1,4,7,6,5,3,7 354 

8 80 290.6 8,9,10,1,8,3,4,5,3,7 498 

9 70 385.02 6,2,7,3,4,9,4,5,6,7 538 

10 60 378.15 8,9,3,1,10,3,4,5,2,7 529 

11 50 599.85 8,2,10,1,5,5,8,3,6,7 464 

12 High 40 384.54 8,2,7,1,2,9,2,5,3,7 387 

13 30 852.39 9,1,7,1,10,8,9,3,6,7 440 

14 20 807.11 2,4,7,9,4,2,7,5,6,7 494 

15 10 992.17 8,7,7,2,10,4,7,5,6,7 600 

 

 

The percent difference between developed ABOGA to OptQuest algorithm is shown in Table 22. 

While the difference is as low as 0 and 0.003% in low operational tempo, this difference 

increases to 95% in higher operational tempo levels. In most cases (except experiment no 1 and 

4) the GA based algorithm (ABOGA) performs better than OptQuest algorithm under the same 

rules (number simulation replications are 15, convergence rate is set to 100, and maximum 

number of generation is set to 1000). Moreover, the randomness (the fluctuation) in OptQuest 

output is higher than the ABOGA output, which makes ABOGA more reliable (Figure 15). 
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Table 22. Percent Difference Between Developed ABOGA Method Results to OptQuest Results  

Experiment 

No 

Operational 

Tempo 

Inter arrival 

time of work 

orders (sec., 

randomly 

distributed) 

Average 

duration from 

ABOGA 

assignments 

Average 

duration from 

OptQuest 

assignments 

% 

Difference 

1 Low 150 238.73685 238.72 0 

2 140 262.94016 287.92 9.5002 

3 130 241.6398 292.28 20.9569 

4 120 242.21153 243.03 0.337915 

5 110 259.0673 328.33 26.73541 

6 100 251.13481 315.18 25.50231 

7 Medium 90 247.05888 278.77 12.83545 

8 80 251.41364 290.6 15.58641 

9 70 263.60068 385.02 46.06184 

10 60 301.40204 378.15 25.46365 

11 50 306.76413 599.85 95.54111 

12 High 40 440.90564 500.54 13.52542 

13 30 473.32428 852.39 80.08584 

14 20 649.88586 807.11 24.19258 

15 10 808.13715 992.17 22.77248 
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Figure 15. Comparison of developed ABOGA results to OptQuest results  

 

Note that the OptQuest results are better than common practices’ results during medium and high 

operational tempo. In low operational tempo, there are situations that ABOC method results are 

better than OptQuest results (Table 23 experiment no 2, 3, and 5). The percent difference 

between OptQuest and common practices results increases as the operational tempo increases. 

While OptQuest leads better results than common practices in general (except in low operational 

tempo); overall, it has been shown that the developed ABOGA method leads better results than 

all approaches (Figure16). 
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Table 23. Percent Difference Between OptQuest Results to Common Practice Heuristics Results  

Experiment 

No 

Operational 

Tempo 

Inter arrival 

time of work 

orders (sec., 

randomly 

distributed) 

Average 

duration 

from ABOC 

assignments 

Average 

duration from 

ABOA 

assignments 

Average 

duration from 

OptQuest 

assignments 

% difference 

between 

ABOC to 

OptQuest 

% 

difference 

ABOA to 

OptQuest 

1 Low 150 259.42 678.06 238.72 8.67 184.04 

2 140 266.71 678.03 287.92 -7.37 135.49 

3 130 278.36 681.7 292.28 -4.76 133.24 

4 120 289.42 689.89 243.03 19.09 183.87 

5 110 306.28 692.1 328.33 -6.72 110.79 

6 100 327.18 701.35 315.18 3.81 122.52 

7 Medium 90 361.24 708.84 278.77 29.58 154.27 

8 80 410.27 729.92 290.6 41.18 151.18 

9 70 512.49 765.8 385.02 33.11 98.90 

10 60 675.37 791.78 378.15 78.60 109.38 

11 50 886.82 861.51 599.85 47.84 43.62 

12 High 40 1120.7 906.14 500.54 123.90 81.03 

13 30 1378.74 972 852.39 61.75 14.03 

14 20 1588.37 1031.54 807.11 96.80 27.81 

15 10 1801.39 1143.38 992.17 81.56 15.24 
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Figure 16. Comparison Between Developed ABOGA Approach, OptQuest and Common 

Practices 

5.5. Influences of other parameters  
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methods does stay the same as the capability level coefficient changes. ABOGA method 

is sensitive to capability level difference coefficient only on high operational tempo 

(Figure 19). In ABOGA results, one can see the increase in the average duration during 

high operational tempo (Inter-arrival time of work orders 10 and 30) as the capability 

level coefficient increases.  

 

 

Figure 17. Results of ABOA with Varying Capability Difference Coefficient 
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Figure 18. Results of ABOC with Varying Capability Difference Coefficient 

 

 

Figure 19. Results of ABOGA with Varying Capability Difference Coefficient 
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ABOGA method has led to lower average duration under low and medium operational 

tempo than ABOA method under changing capability level difference coefficient. 

Moreover, it has led to lower average duration under all operational tempos than ABOC 

method no matter the capability level difference coefficient is (see Table 24). In some 

cases, ABOA leads by three times the higher average durations than ABOGA method, 

while ABOC leads by 2 times the higher average durations. However, under high 

operational tempo, with low capability level difference coefficient (0.1 and 0.3), ABOA 

methods performs better than ABOC and ABOGA. With inter-arrival time of work orders 

of 30 seconds (randomly distributed) and capability level difference coefficient 0.1; 

ABOA found 20% lower average duration than ABOGA assignments. With inter-arrival 

time of work orders of 10 seconds (randomly distributed) and capability level difference 

coefficient 0.1; ABOA found 48% lower average duration than ABOGA assignments.  It 

shows that, in the case of capability levels have very low effect on average duration, 

assigning agents to tasks based on their availability is necessary in order to minimize the 

average duration. It is important to mention again that low capability level difference 

coefficient means that the capability levels have low effect on average duration of the 

work process. 
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Table 24. Comparison on Outputs from ABOA, ABOC and ABOGA with Varying Capability Difference Coefficient 

 

Operational 

Tempo 

Inter arrival 

time of work 

orders (sec., 

randomly 

distributed) 

Capability 

level 

difference 

coefficient 

Average 

duration from 

ABOA 

assignments 

Average 

duration from 

ABOC 

assignments 

Average 

duration from 

ABOGA 

assignments 

% difference 

between 

ABOA and 

ABOGA 

% difference 

between 

ABOC and 

ABOGA 

low 150 

0.1 321.77 259.42 238.76 34.76 8.65 

0.3 496.48 259.42 258.39 92.15 0.40 

0.5 678.06 259.42 248.68 172.67 4.43 

0.7 865.23 259.42 240.24 260.15 7.98 

0.9 1050.89 259.42 238.62 340.40 8.72 

low 100 

0.1 325.19 327.18 244.32 33.10 33.91 

0.3 504.69 327.18 260.82 93.50 25.44 

0.5 697.99 327.18 285.88 144.16 14.45 

0.7 922.56 327.18 249.85 269.25 30.95 

0.9 1170.3 327.18 264.75 342.03 23.58 

medium 50 

0.1 335.32 886.82 292.71 14.56 202.96 

0.3 576.38 886.82 305.63 88.59 190.16 

0.5 861.51 886.82 335.61 156.70 164.24 

0.7 1150.12 886.82 337.23 241.05 162.98 

0.9 1497.81 886.82 319.22 369.21 177.81 

high 30 

0.1 364.03 1378.74 457.01 -20.35 201.69 

0.3 657.6 1378.74 545.81 20.48 152.61 

0.5 972 1378.74 534.73 81.77 157.84 
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Table 24. Continued 

 

  

0.7 1284.67 1378.74 694.03 85.10 98.66 

0.9 1608.29 1378.74 884.22 81.89 55.93 

high 10 

0.1 448.02 1801.39 857.14 -47.73 110.16 

0.3 830.71 1801.39 877.43 -5.32 105.30 

0.5 1143.38 1801.39 999.98 14.34 80.14 

0.7 1429.62 1801.39 994.80 43.71 81.08 

0.9 1864.93 1801.39 1183.91 57.52 52.16 
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These experiments show the effect of capability level differences between agents and 

tasks on Air Interdiction Planning Mission work process duration under different 

assignment rules namely; ABOC, ABOA, and ABOGA. The ABOGA method is the most 

robust with consistently delivering lower average durations under varying capability 

levels.  

The Effect of Number of Work Orders  

Number of work orders affects the average duration because it increases the maximum 

duration of work orders, i.e., as the number of work orders increases, the work orders that 

are waiting in the queue for parallel tasking increases.  

As well as the original number of work orders, a lower number of work orders (10) and a 

higher number of work orders (50) were chosen to be tested under various operational 

tempos (randomly distributed inter-arrival times of work orders of 10, 30, 50, 100 and 

150 seconds).  

The results from ABOA and ABOC methods show that the number of work orders does 

not have a significant effect on average duration for low levels of operational tempo. 

However, during medium and high operational tempo, the number of work orders starts 

to show its effect on average duration of the work processes. For medium and high 

operational tempo, as the number of work orders increase, the average duration increases 

under ABOA and ABOC methods (Figure 20 and 21, respectively). On the other hand, 

the developed ABOGA method is less sensitive to increasing number work orders except 

during very high operational tempo (inter-arrival time of work orders of 10 seconds). 

During inter-arrival times of work orders of 150, 100, 50 and 30, the average duration 
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does not fluctuate more than 10% percent. However, for inter-arrival times of work 

orders of 10 seconds, one can see the increase in average duration easily as the number of 

work orders increases under ABOGA method (Figure 22).  

 

 

Figure 20. Results of ABOA with Varying Number of Work Orders 

 

 

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

A
ve

ra
ge

 D
u

ra
ti

o
n

# of work orders

Assignment based on Availability

Inter-arrival time of work
orders=150

Inter-arrival time of work
orders=100

Inter-arrival time of work
orders=50

Inter-arrival time of work
orders=30

Inter-arrival time of work
orders=10



 

    

121 

 

Figure 21. Results of ABOC with Varying Number of Work Orders 

 

 

Figure 22. Results of ABOGA with Varying Number of Work Orders 
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Moreover, ABOC leads to higher average duration for high operational tempo, while 

ABOA lower and ABOGA is the lowest. For the percent differences in those common 

practices to ABOGA method, see Table 25. 
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Table 25. Comparison on Outputs from ABOA, ABOC and ABOGA with Varying Number of Work Orders 

Operational 
Tempo  

Inter arrival 
time of work 
orders (sec., 
randomly 
distributed) 

# of work orders 

Average 
duration from 
ABOA 
assignments 

Average 
duration from 
ABOC 
assignments 

Average 
duration from 
ABOGA 
assignments 

% difference 
between ABOA 
and ABOGA 

% difference 
between ABOC 
and ABOGA 

low 150 

10 661.16 242.56 216.55 205.32 12.01 

30 678.06 259.42 239.74 182.83 8.21 

50 673.11 255.98 248.93 170.4 2.83 

low 100 

10 672.56 271.01 252.85 166 7.18 

30 701.35 327.18 251.13 179.27 30.28 

50 699.08 320.52 277.21 152.19 15.62 

medium 50 

10 701.48 371.44 354.67 97.78 4.73 

30 861.51 886.82 316.39 172.29 180.29 

50 919.43 1315.47 330.66 178.06 297.83 

high 30 

10 735.05 481.3 414.82 77.20 16.03 

30 972 1378.74 547.34 77.59 151.9 

50 1083.58 2242.83 652.05 66.18 243.97 

high 10 

10 759.59 614.42 511.71 48.44 20.07 

30 1143.38 1801.39 919.11 24.4 95.99 

50 1386.65 2947.2 1305.99 6.18 125.67 
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To summarize, in order to initiate the experiments, the system behavior of Air 

Interdiction Planning Mission under varying operational tempo is analyzed through 

applying commonly used task-agent assignment methods namely assignment based on 

capability (ABOC) and assignment based on availability (ABOA). ABOC leads to lower 

average duration during low and medium operational tempo and ABOA leads to lower 

average duration during high operational tempo showing that variables of capability and 

mental workload of the agents are important for the duration of the work process. Once 

the appropriate area of concern was identified, the developed assignment based on GA 

simulation optimization method (ABOGA) was employed. First, the results obtained 

from ABOGA method were compared to the results obtained from applying the common 

practices to the problem. In low operational tempo, the solutions found by ABOGA were 

better (around 10%), but very close to solutions found by ABOC. However, during 

medium and high operational tempo, the average duration resulted from ABOC started to 

increase gradually. The reason is ABOC over assigns the most capable agent while some 

of the agents stay idle. The ABOGA method addresses this issue and finds the right 

assignments without over assigning an agent. Even though, ABOA takes the workload of 

the agent into consideration, it doesn’t consider the capability levels and result in 

assigning agents to tasks with unmatched capabilities. As a result, it ends up with higher 

average duration than the ABOGA. From the graph in Figure 14, one can see the 

considerable difference in the average duration results from common practices and 

ABOGA method. Especially during medium and high operational tempo, this difference 

gap increases. It can be concluded that ABOGA method finds the task-agent assignments 
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that lead to lower average duration of work process over the ABOC and ABOA methods. 

Second, the developed ABOGA is compared to another simulation optimization tool, 

OptQuest. In most cases (except experiment no 1 and 4, in these experiments the results 

from OptQuest and ABOGA are equal) GA based algorithm performs better than 

OptQuest algorithm under the stated rules (convergence rate is 100, maximum number of 

generation is 1000). While the difference between ABOGA and OptQuest is as low as 0 

and 0.003% (nearly the same) in low operational tempo, this difference increases to 95% 

in higher operational tempo levels where ABOGA performs better. Moreover, the 

randomness in OptQuest output is higher than the ABOGA output, which makes 

ABOGA more reliable (Figure 15). While OptQuest leads to a better solution than 

common practices in general; overall, it has been proved that the developed ABOGA 

approach leads better solutions under any operational tempo setting than all the 

alternative approaches stated in this study.  

Additionally, the effects of parameters namely “Capability Level Difference Coefficient” 

and “Number of Work Orders” on the average work process duration (output) is tested 

under varying operational tempo in order to have further understanding of the impact of 

these parameters on the assignment methods.  

ABOC method has found to be insensitive to capability level difference coefficient, while 

as this coefficient increases the average duration result from ABOA method increases. 

ABOGA method has found to be sensitive to this coefficient only on very high 

operational tempo. Under high operational tempo, with low capability level difference 

coefficient (0.1 and 0.3), ABOA methods performs better than ABOC and ABOGA. Note 

that low capability level difference coefficient means that the capability level of agents 
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has low effect on task duration. For the managerial implications, if the work process 

under consideration is a process with high operational tempo and the agents’ capabilities 

are not important then there is no need to develop a simulation-optimization model. In 

that case using the common approach of assigning agents to tasks based on their 

workload availability is the way to achieve lowest average duration. On the other hand, 

using ABOGA methods is beneficial under medium operational tempo with any 

capability level difference coefficient. ABOGA method finds assignments that lead to an 

average of 200% lower average durations than the common approaches. Under low 

operational tempo, ABOC method performs better than ABOA. However, ABOGA 

method’s performance is better than both common approaches. Note that the results from 

ABOC and ABOGA under very low operational tempo are very close. This is also true 

for the cases that the number of work orders changing. Both, ABOC and ABOA methods 

are found to be sensitive to number of work orders during medium and high operational 

tempo. During medium and high operational tempo, as the number of work orders 

increases the average duration increased under ABOC and ABOA rules. Once again, 

ABOGA was only sensitive to number of work orders under very high operational tempo. 
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Overall, ABOGA method has proved to find the right agent-task assignments that lead to highest 

performance (lower average duration) for work processes (except the extreme case of a work 

process under high operational tempo, with low capability level difference coefficient) than the 

other methods: ABOC, ABOA and OptQuest.  
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6. CONCLUSIONS AND FUTURE WORK 

This study proposes that optimizing task-employee assignment according to employees’ 

capabilities while keeping them under their mental workload threshold to prevent them from 

making errors, results in better performance for work processes, especially during critical time 

junctions (i.e. work processes in an emergency room or military command center). For these 

work processes, timeliness is the key of the good performance. Accordingly, the goal is to select 

the best employee-task assignment in order to minimize average duration of a work process. Due 

to uncertainties inherent in the problem related with inter-arrival time of work orders, task 

durations, and employees’ instantaneous workload, a simulation-optimization approach is 

utilized to solve the problem. More specifically, a discrete event human performance simulation 

model is used to evaluate the objective function of the problem together with a genetic algorithm 

based meta-heuristic optimization approach to search the solution space.  In order to measure 

mental workload, a subjective mental workload measurement method (VACP) is employed by 

integrating it in the simulation model. The genetic algorithm used in the optimization engine is 

enhanced with additional rules (i.e. similarity avoid rate, mutation increase rate) and tuned for 

the right GA parameters (population size, crossover rate, mutation rate). The integration of the 

simulation model and optimization engine is achieved through exchange of text files. Moreover, 

throughout the dissertation, software requirements in order to achieve the integration are 

discussed in detail.  

The proposed methodology has been shown to be advantageous in determining the right task-

agent assignments by taking in to consideration employees’ qualifications and mental workload 

in order to minimize average duration of a work process. The Air Interdiction Planning Mission 

work process is used as an example to show the effectiveness of the proposed approach.   
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In order to establish the baseline conditions for the example work process, first the simulation 

model combined with common practices namely, assignment based on capability and assignment 

based availability, are ran through various operational tempo (frequency of inter-arrival time of 

work orders). In doing so, low, medium and high operational tempo ranges are defined. These 

common practices represent the two extreme assignment rules that are used regularly in 

organizations. Assignment based on capability method represents the extreme case where only 

capability of employees is used as the assignment criteria.  Assignment based availability method 

represents the other extreme case where only the availability of employees is used as the 

assignment criteria. According to the results, it is found that assignment based on capability 

method leads to better performance during lower operational tempo and assignment based on 

availability method leads to better performance during high operational tempo. However, the 

developed GA based simulation optimization method, assignment based on genetic algorithm 

found the task-employee assignments that lead to lower average duration for the work process 

than the common practices under any operation tempo range (low, medium, and high). In low 

operation tempo, the results from the developed method were better but close to assignment 

based on capability method results. As the operational tempo increases, the gap in the results 

from common practices and the developed method increased as well. It is shown that by using 

the developed method, one can find the task- employee pairs that result in lower average duration 

of the work process than common practices while keeping the employees under their workload 

threshold to prevent them from making errors.  

Moreover, the developed method is compared to a commercial simulation optimization tool 

OptQuest. During medium and high operational tempo, the assignment based on genetic 
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algorithm found the employee-task pairs that result in substantially lower average durations than 

OptQuest.  

From a practitioner’s point of view, in a work process assignment problem, there is a high 

number of possible agent-task assignments and this number increases exponentially as the 

number of tasks and employees increases (for instance, under the example scenario the possible 

agent-task assignments were 10,000,000,000). It is not possible for a decision maker to evaluate 

all possibilities in order to decide which pair would lead to the lowest duration. As a result, 

employing the developed simulation optimization method is paramount when finding the agent-

task pairs that lead to a lower average duration under varying operational tempo. This is done 

while also insuring the employees are not overloaded. Especially if the work process is under 

medium or high operational tempo (such as work processes that intelligence analysts conduct 

during a war effort), the benefit of using this simulation optimization method is immense. The 

example work process showed the developed method could find solutions, which are up to 190% 

better in terms of duration. Moreover, if the work process is under very low operational tempo, 

the developed simulation optimization still outperforms commonly used assignment methods.  

The effects of Capability Level Difference Coefficient and Number of Work Orders on the 

average work process duration is tested under varying operational tempo in order to have a 

further understanding of these parameters on the need for the simulation-optimization method. 

The assignment based on capability method has found to be insensitive to capability level 

difference coefficient. The duration does not change, regardless of the capability level difference 

coefficient.  On the other hand, when this coefficient increases, the average duration result from 

assignment based on availability method also increases. The developed method has found to be 

sensitive to this coefficient only on very high operational tempo. Using the developed simulation 
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optimization method is found to be most beneficial under medium operational tempo with any 

capability level difference coefficient. The developed method finds assignments that lead to 

around 200% lower average durations than the common approaches under medium operational 

tempo with varying capability level difference coefficient.  

The common assignment approaches are found to be sensitive to the number of work orders 

during medium and high operational tempo. During medium and high operational tempo, as the 

number of work orders increases, the average duration increased under these methods. The 

developed approach was only sensitive to number of work orders under very high operational 

tempo. 

For a decision maker, employing the developed approach would give the most benefit if the work 

process were under medium and high operational tempo. Moreover, if the capability levels of the 

employees have dramatic effect on the tasks durations, this benefit can increase up to 200%. 

Furthermore, the benefit of using the developed approach increases in case of the number of 

work orders for the process increases. 

The numerical tests show the developed approach finds better solutions over common practices 

and other simulation-optimization methods (such as a commercial simulation optimization tool, 

OptQuest). By combining the benefits of optimization and simulation, the overall approach 

provides increased ability to understand the impact of operational tempo, workload threshold 

levels, and employee capabilities in terms of the organizational work process. The areas where 

the developed method provide the most benefit is explained in detail. Computational results of 

this study not only provide managerial visions and measure the significance of intangible factors 

in the employee assignment process, but also highlight the importance of computational tools 
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such as simulation optimization of the assignment problem for work processes in critical time 

junctions.   

6.1. Summary of Specific Findings for the Air Interdiction Planning Mission Case Study 

 

 ABOC rule performs better than ABOA under low operational tempo. However, ABOA 

rule returns better (lower) average duration results in high operational tempo when 

timeliness is crucial (Figure 11).  This result confirms the importance of both parameters 

“agent’s capability” and agent’s workload level” on the performance of a work process.  

 ABOGA has better results than both ABOC and ABOA rules in low and high operational 

tempo. In low operational tempo, the results from ABOGA are closer to the results from 

ABOC. Yet, as the operational tempo increases, the benefit of using ABOGA starts to 

increase (Figure 14). In some cases, ABOGA finds assignments that return average 

duration up to 154% better than ABOC and 190% better than ABOA (Table 20). For 

work processes in critical time junctions, it is a very substantial difference. 

 The commercial simulation optimization package “OptQuest” is used to solve the same 

problem with the same parameters. OptQuest found better solutions than ABOA method 

in every operational tempo and ABOC method in medium and high operational tempo 

(Table 22).  

 However, ABOGA found assignments that return in better average duration than 

OptQuest (Figure 15). The difference between ABOGA and OptQuest is less in low 

operational tempo, and increases as the operational tempo increases up to 95% (Table 

22). 

 Overall, ABOGA is the approach that finds agent-task pairs that return the lowest (better) 

average duration (Figure 16). 



 

    

133 

 Capability level difference coefficient (the coefficient that emphasizes the importance of 

the difference between capability level of agents and required capability level from tasks 

on the task duration) affects the average duration negatively for ABOA method (Figure 

17). As the coefficient increases, the average duration increases linearly. However, this 

coefficient does not have an effect on ABOC method (Figure 18). In ABOGA case, the 

coefficient affects the average duration results negatively in high operational tempo while 

there is no significant effect in medium and low operational tempo (Figure 19).  

 Capability level difference coefficient (the coefficient that emphasizes the importance of 

the difference between capability level of agents and required capability level from tasks 

on the task duration) affects the average duration negatively for ABOA method (Figure 

17). As the coefficient increases, the average duration increases linearly. However, this 

coefficient does not have an effect on ABOC method (Figure 18). In ABOGA case, the 

coefficient affects the average duration results negatively in high operational tempo while 

there is no significant effect in medium and low operational tempo (Figure 19).  

 Overall, ABOGA leads to better results in finding the task-agent pairs that leads to lower 

average duration than ABOA and ABOC methods under changing capability level 

difference coefficient except the of the work process under high operational tempo, with 

low capability level difference coefficient. In the mentioned case, ABOA method 

performs better than ABOC and ABOGA. (Table 24). 

 ABOA and ABOC methods are proved sensitive to changing number of work orders. As 

the number of work orders increase the average duration output from these methods 

increases in high operational tempo (inter-arrival times of work orders:10- 30 -50 sec.) 
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(Figure 20 and Figure 21). On the other hand, ABOGA only sensitive to number of work 

orders in very high operational tempo (inter-arrival time work order 10 sec.) (Figure 22).  

 It is important to mention that under very low operational tempo with changing number 

of work orders the results obtained from ABOGA and ABOC methods were very close, 

while ABOGA method perform better an average of 10% than ABOC.  

 Overall, once again ABOGA leads to better results in finding the task-agent pairs that 

leads to lower average duration than ABOA and ABOC methods under changing number 

of work orders (Table 25). 

6.2. Contributions to the Body of Knowledge 

 

The major contributions of this study are as follows: 

 A genetic algorithm based human performance simulation optimization approach that 

finds sufficiently good solutions of employee-task assignments in order to minimize 

average durations of work processes in critical time junctions. 

 An employee-task assignment tool that can handle large solution spaces (high number of 

employee and tasks).  

 A simulation modeling framework that embraces the stochastic nature of work processes 

(such as task durations, inter arrival time of work orders, employees’ instantaneous 

workload).   

 A human performance simulation-modeling tool, which is integrated seamlessly with 

other software. Current human performance simulation modeling tools (for commercial 

use) are only capable of getting input from the user (such as IMPRINT, C3TRACE, 
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IPME) which limit the analysis to only what-if analysis. The need of a human 

performance simulation-modeling tool that communicates with other software is satisfied. 

 A flexible tool, which managers can use to evaluate different work processes with 

different task-employee sizes, capabilities, workloads and operating rules.  

6.3. Future Work  

 

Some future research directions after this dissertation will include the followings: 

 

 The key limitation of the overall solution approach lies in the large computing times that 

are mainly due to simulation. As a future research direction, methods to reduce the time 

spent in simulation should be investigated.  

 Another (more sophisticated) alternative assignment method that explores the ratio of 

capability and availability of the employee as a metric to get an acceptable solution 

should be developed.  

 The GA based simulation optimization method should be applied to bigger size problems 

with work processes that comprised of 15 to 20 tasks.  

 A military environment task process is used in order to test the developed approach. 

Another context, such as health care environment should be considered.  

 Beside the VACP workload measurement method, NASA-TLX should be applied and 

compared to the results from VACP method. 
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