6 research outputs found

    Mathematische Verfahren zur Aufklärung der Struktur, Dynamik und biologischen Aktivität von Molekülen unter Verwendung von NMR spektroskopischen und empirischen Parametern

    Get PDF
    In der vorliegenden Arbeit werden Verfahren der Mathematik und Informatik entwickelt und eingesetzt, um Struktur, Dynamik und biologische Aktivität aus NMR spektroskopischen und empirischen Parametern zu bestimmen. Dolastatin 10 und Epothilon A sind potentielle Wirkstoffe gegen Krebs, da sie durch Wechselwirkung mit Tubulin die Zellteilung unterbinden. Die 3D Struktur beider Wirkstoffe in Lösung und die Struktur von an Tubulin gebundenem Epothilon A wird aus NMR spektroskopischen Parametern bestimmt. Dolastatin 10 liegt in einem konformationellen Gleichgewicht zwischen der cis -- und trans -- Konformation in der ungewöhnlichen Aminosäure DAP vor. Beide Konformationen des flexiblen Pentapeptids können bestimmt werden mit RMSD = 1.423 Å für das cis -- Konformer und RMSD = 1.488 Å für das trans -- Konformer. Während das trans -- Konformer gestreckt vorliegt, faltet das cis -- Konformer am DAP zurück. Epothilone A ist durch einen Makrozyklus weniger flexibel und sowohl die an Tubulin gebundene Struktur (RMSD = 0.537 Å) als auch freie Form (RMSD = 0.497 Å) kann mit geringen RMSD -- Werten bestimmt werden. Die Struktur der freien Form, welche in Lösung hauptsächlich vorliegt, ist mit der Röntgenstruktur weitgehend identisch. In der an Tubulin gebundenen Form wird eine essentielle Umorientierung der Seitenkette beobachtet, die für die Wechselwirkung mit Tubulin entscheidend ist. Dipolare Kopplungen eines Proteins sind geeignet, eine 3D Homologiesuche in der PDB durchzuführen, da die relative Orientierung von Sekundärstrukturelementen und Domänen durch sie beschrieben wird 85 . Die frühe Erkennung 3D homologer Proteinfaltungen eröffnet die Möglichkeit, die Bestimmung von Proteinstrukturen zu beschleunigen. Eine Homolgiesuche unter Nutzung dipolarer Kopplungen ist in der Lage, Proteine oder zumindest Fragmente mit ähnlicher 3D Struktur zu finden, auch wenn die Primärsequenzhomologie gering ist. Darüber hinaus wird eine Transformation für experimentelle dipolare Kopplungen entwickelt, die die indirekte Orientierungsinformation eines Vektors relativ zu einem externen Tensor in den möglichen Bereich für den Projektionswinkel zwischen zwei Vektoren und somit in eine intramolekulare Strukturinformation übersetzt. Diese Einschränkungen können in der Strukturbestimmung von Proteinen mittels Molekulardynamik genutzt werden 92 . Im Gegensatz zu allen existierenden Implementierungen wird die Konvergenz der Rechnung durch die auf diese Weise eingeführten dipolare Kopplungsinformation kaum beeinflusst. Die dipolaren Kopplungen werden trotzdem von den errechneten Strukturen erfüllt. Auch ohne die Nutzung bereits bekannter Protein­ oder Fragmentstrukturen kann so ein erheblicher Teil der NOE -- Information substituiert werden. Die Dynamik des Vektors, der die beiden wechselwirkenden Dipole verbindet, beeinflusst den Messwert der dipolaren Kopplung. Dadurch wird Information über die Dynamik von Molekülen auf der µs­Zeitskala zugänglich, die bisher nur schwer untersucht werden konnte. Die Messung dipolarer Kopplungen für einen Vektor in verschiedenen Orientierungen erlaubt die Analyse seiner Bewegung 89 . Im besonderen ist die Ableitung eines modellfreien Ordnungsparameters 2 S möglich. Weiterhin lassen sich ebenso modellfrei eine mittlere Orientierung des Vektors, axialsymmetrische Anteile und nichtaxialsymmetrische Anteile der Dynamik ableiten und auswerten. Die Anwendung der so entwickelten Protokolle auf experimentelle Daten 90 lässt Proteine deutlich dynamischer erscheinen als auf der Zeitskala der Relaxationsexperimente zu erkennen ist. Der mittlere Ordnungsparameter sinkt von 0.8 auf 0.6. Dies entspricht einer Erhöhung des Öffnungswinkels der Bewegung von ca. 22 ° auf ca. 33°. Die Bewegungen weichen teilweise bis zu 40% und im Mittel 15% von der Axialsymmetrie ab. Neuronale Netze erlauben eine schnelle (ca. 5000 chemische Verschiebungen pro Sekunde) und exakte (mittleren Abweichung von 1.6 ppm) Berechnung der 13 C NMR chemischen Verschiebung 115 . Dabei kombinieren sie die Vorteile bisher bekannter Datenbankabschätzungen (hohe Genauigkeit) und Inkrementverfahren (hohe Geschwindigkeit). Das 13 C NMR Spektrum einer organischen Verbindung stellt eine detaillierte Beschreibung seiner Struktur dar. Resultate des Strukturgenerators COCON können durch den Vergleich des experimentellen mit den berechneten 13 C NMR Spektren auf ca. 1 o/oo der vorgeschlagenen Strukturen eingeschränkt werden, die eine geringe Abweichung zum experimentellen Spektrum haben 122 . Die Kombination mit einer Substrukturanalyse erlaubt weiterhin die Erkennung wahrscheinlicher, geschlossener Ringsysteme und gibt einen Überblick über die Struktur des generierten Konstitutionssubraumes. Genetische Algorithmen können die Struktur organischer Moleküle ausgehend von derer Summenformel auf eine Übereinstimmung mit dem experimentellen 13 C NMR Spektrum optimieren. Die Konstitution von Molekülen wird dafür durch einen Vektor der Bindungszustände zwischen allen Atom -- Atom Paaren beschrieben. Selbige Vektoren sind geeignet, in einem genetischen Algorithmus als genetischer Code von Konstitutionen betrachtet zu werden. Diese Methode erlaubt die automatisierte Bestimmung der Konstitution von Molekülen mit 10 bis 20 Nichtwasserstoffatomen 123 . Symmetrische neuronale Netze können fünf bzw. sieben dimensionale, heterogene Parameterrepräsentationen der 20 proteinogenen Aminosäuren unter Erhalt der wesentlichen Information in den dreidimensionalen Raum projizieren 134 . Die niederdimensionalen Projektionen ermöglichen eine Visualisierung der Beziehungen der Aminosäuren untereinander. Die reduzierten Parameterrepräsentationen sind geeignet, als Eingabe für ein neuronales Netz zu dienen, welches die Sekundärstruktur eines Proteins mit einer Genauigkeit von 66 % im Q 3 -- Wert berechnet. Neuronale Netzte sind aufgrund ihrer flexiblen Struktur besonders geeignet, quantitative Beziehungen zwischen Struktur und Aktivität zu beschreiben, da hier hochgradig nichtlineare, komplexe Zusammenhänge vorliegen. Eine numerische Codierung der über 200 in der Literatur beschriebenen Epothilonderivate erlaubt es, Modelle zur Berechnung der Induktion der Tubulin Polymerisation (R = 0.73) und der Inhibierung des Krebszellenwachstums (R = 0.94) zu erstellen 136 . Die trainierten neuronalen Netze können in einer Sensitivitätsanalyse genutzt werden, um die Bindungsstellen des Moleküls zu identifizieren. Aus der Berechnung der Aktivität für alle Moleküle des durch die Parameter definierten Strukturraums ergeben sich Vorschläge für Epothilonderivate, die bis zu 1 000 mal aktiver als die bisher synthetisierten sein könnten

    HSV-1 infection in human induced pluripotent stem cell-derived neurons: cellular models for quiescence and drug discovery

    Get PDF
    Background: Herpes simplex virus, type 1 (HSV-1) establishes latency in human sensory ganglia following primary infection through mucosal tissues. Once latent, the virus persists for the host’s lifetime, with periodic reactivations that cause lytic lesions. First-line medications like acyclovir (ACV) abort lytic reactivations, but drug resistance has been reported and second line drugs may cause serious side effects. These facts, together with inefficacy of antivirals against latency, compel new drug screens; human neural tissues that model aspects of latency are arguably well-suited for such screens. Studies: Study 1. Human induced pluripotent stem cell-derived neurons (iPSC-neurons) were used to model HSV-1 infection employing an HSV-1 construct that incorporates dual fluorescent reporter genes from different kinetic expression groups. Lytic infection was demonstrated initially. ‘Quiescent’ infection was next established using protocols from animal models of latent infection. The quiescent infection fulfilled most criteria for latency, including viral gene expression and heterochromatization patterns. Studies 2 and 3: The antiviral activity of two series of compounds was investigated using monkey epithelial cells and iPSC-neurons. Anti-lytic activity that reduced viral copy number and protein levels was induced by four compounds, of which two compounds also inhibited reactivation of HSV-1 from quiescence/latency. Four compounds were also efficacious against varicella zoster virus and/or human cytomegalovirus infections. Study 4: Moderate throughput platforms for antiviral drug screens based on iPSC-neurons were designed, with readouts based on high content analysis and flow cytometry. Conclusions: Lytic and latent HSV-1 infection was modeled in human iPSC-neurons, with features similar to animal models. Compounds with novel effects against HSV-1 infections were identified using the iPSC-neuron model. Platforms for moderate throughput drug screens are feasible using human iPSC-neuron models. Public Health Significance: Herpesviruses are highly prevalent, with rates exceeding 95% in some populations. Recurrent HSV-1 eye infections are the leading cause of infectious corneal blindness in the USA. HSV-1 encephalitis that is particularly devastating to neonates can be fatal. Associations between HSV-1 seropositivity and cognitive impairment have been reported even without encephalitis. There are no effective HSV-1 vaccines and there are growing concerns about antiviral drug efficacy. In view of the enormous burden, there is a compelling need for novel drug screens

    Développement d'outils computationnels pour une approche de métabolomique non ciblée par spectrométrie de masse à haut débit

    Get PDF
    La métabolomique est l'étude des petites molécules produites par un système biologique. L'objectif principal des études en métabolomique non ciblées est la recherche d'une signature moléculaire, à base de biomarqueurs, permettant de distinguer deux phénotypes(ex. : malade et sain). Elle trouve des applications dans le domaine de la santé, de la nutrition, de l'agroalimentation et même de l'environnement. La spectrométrie de masse couplée à la chromatographie liquide est une des techniques les plus utilisées puisqu'elle offre sensibilité et spécificité lors de l'étude du métabolome. Par contre, le long temps d'analyse limite la taille et la portée des études métabolomiques. De nouvelles approches de métabolomique non ciblée à haut débit par spectrométrie de masse où un échantillon peut être analysé en quelques secondes peuvent cependant éliminer cette barrière. Ce changement de paradigme entraîne une complexification des différentes étapes de l'analyse de données (prétraitement, recherche de biomarqueurs et identification des métabolites). Dans le cadre de cette thèse, nous proposons différents outils basés sur l'apprentissage automatique visant à résoudre les problèmes d'analyse de données causés par une accélération de la vitesse d'acquisition et une augmentation du nombre d'échantillons. Premièrement, nous proposons une série d'algorithmes de correction et d'alignement de spectres de masse visant à les rendre comparables afin de permettre les analyses statistiques et l'apprentissage automatique. Deuxièmement, nous présentons MetaboDashboard, un outil visant à simplifier et à démocratiser l'utilisation de l'apprentissage automatique pour la recherche de biomarqueurs en métabolomique non ciblée. Un exemple de son utilisation dans le contexte d'une infection virale des voies respiratoires est présenté. Finalement, un réseau de neurones appelé DeepCCS permettant la prédiction de la section efficace dans l'objectif de supporter l'identification des métabolites est exposé. Nous démontrons, tout au long de cette thèse, l'utilité et la puissance de l'apprentissage automatique appliqué à la métabolomique non ciblée. Les outils computationnels présentés dans cette thèse sont le point de départ du développement d'une méthode de métabolomique non ciblée à haut débit. Nous espérons qu'ultimement, les contributions de cette thèse permettront la détection de biomarqueurs associés à différents phénotypes dans des populations entières avec un maximum de précision et à une vitesse encore jamais vue.Metabolomics is defined as the study of small molecules produced by a biological system. The main objective of metabolomic studies is the search of a molecular signature, constituted of biomarkers, that allow to distinguish two phenotypes (ex: sick and healthy). It can be applied to diverse fields such as health, nutrition, food and environment. Mass spectrometry coupled to liquid chromatography is the most common technique used in metabolomics since it offers sensibility and specificity. Unfortunately, the long running time of these analysis limits the size and impact of metabolomic studies. New approaches in high-throughput untargeted metabolomics, where a sample can be analyzed in seconds, try to overcome this limitation. This new paradigm increases the complexity of the different data analysis steps that follows that acquisition (data pre-treatment, biomarker discovery and metabolite identification). In this thesis, we propose different tools based on machine learning that aim at solving the new data analysis issues that arise from the increased number of samples and throughput. First, we present new algorithms to correct and align mass spectra to make them comparable in order to enable statistical analysis and machine learning. Second, we present MetaboDashboard, a tool that aims at simplifying and democratizing the use of machine learning approach for biomarker discovery in the context of untargeted metabolomics. An example of its usage in the context of viral respiratory tract infection is then presented. Finally, a neural network tool called DeepCCS, that allow the prediction of collisional cross section for metabolite identification is reported. Throughout this thesis, we demonstrate the use and impact of machine learning applied to different problems in untargeted metabolomics. The computational tools presented in this thesis are the first steps towards the development of new methods in high-throughput untargeted metabolomics. We hope that ultimately, the scientific contributions presented in this thesis will enable biomarker discovery for different phenotypes at the scale of whole population with a level of precision and speed never seen before

    The Origin and Early Evolution of Life

    Get PDF
    What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field

    Recent Developments in Annexin Biology

    Get PDF
    Discovered over 40 years ago, the annexin proteins were found to be a structurally conserved subgroup of Ca2+-binding proteins. While the initial research on annexins focused on their signature feature of Ca2+-dependent binding to membranes, over the years, the biennial “Annexin” conference series has highlighted additional diversity in the functions attributed to the annexin family of proteins. The roles of these proteins now extend from basic science to biomedical research, and are being translated into clinical settings. Research on annexins involves a global network of researchers and the 10th biennial Annexin conference brought together over 80 researchers from ten European countries, USA, Brazil, Singapore, Japan, and Australia for 3 days in September 2019. In this conference, the discussions focused on two distinct themes — the role of annexins in cellular organization and health and disease. The articles published in this Special Issue cover these two main themes discussed at the conference, offering a glimpse into some of the notable findings in the field of annexin biolog
    corecore